Homework set 10 - due March 27

Problem 1. Let V be a Banach space and let $T \in \mathcal{L}(V)$. Let $\Omega \supset \sigma(T)$ and let $f: \Omega \subset \mathbb{C} \rightarrow \mathbb{C}$ be analytic. Let γ be a positively oriented simple closed C^{2}-path in $\Omega \cap \rho(T)$ whose interior contains $\sigma(T)$. Define

$$
f(T)=\frac{1}{2 \pi \mathrm{i}} \oint_{\gamma}(z 1-T)^{-1} f(z) d z
$$

(i) Let $P(z)=\sum_{j=1}^{N} a_{j} z^{j}$ be a polynomial. Prove that $P(T)=\sum_{j=1}^{N} a_{j} T^{j}$

Hint. See equation (2) in Solution 9
(ii) Prove that the (holomorphic) functional calculus $f \mapsto f(T)$ is a homomorphism between the algebra of functions analytic in Ω into the algebra $\mathcal{L}(V)$.

Hint. Express $(z 1-T)^{-1}(w 1-T)^{-1}$ as a difference. You are allowed to commute integrals without justification. Recall that if $f: \Omega \subset \mathbb{C} \rightarrow \mathbb{C}$ is analytic, then $(2 \pi \pi)^{-1} \oint_{\gamma} \frac{f(z)}{z-w} d z$ equals $f(w)$, respectively 0 , if w is inside, respectively outside, of the contour γ.
(iii) Show that $\sigma(f(T))=f(\sigma(T))$.

Problem 2. (i) Let $\|v\|=\langle v, v\rangle^{1 / 2}$ be a Hilbert space norm. Prove that it obeys the parallelogram law

$$
\|u+v\|^{2}+\|u-v\|^{2}=2\|u\|^{2}+2\|v\|^{2}
$$

(ii) Let V be a complex vector space. Let $\|\cdot\|$ be a norm on V obeying the parallelogram law. Prove that

$$
\langle u, v\rangle=\frac{1}{4}\left(\|u+v\|^{2}-\|u-v\|^{2}-\mathrm{i}\|u+\mathrm{i} v\|^{2}+\mathrm{i}\|u-\mathrm{i} v\|^{2}\right)
$$

is an inner product.
Hint. That $\langle v, u\rangle=\overline{\langle u, v\rangle}$, that $\langle u, \mathrm{i} v\rangle=\mathrm{i}\langle u, v\rangle$, and that $\langle u, v+w\rangle=\langle u, v\rangle+\langle u, w\rangle$ is a result of simple but tedious calculations, which do not need to be provided. In order to prove $\langle u, \lambda v\rangle=$ $\lambda\langle u, v\rangle$, for any $\lambda \in \mathbb{C}$, prove it first for λ having rational real and imaginary parts, then prove the Cauchy-Schwarz inequality, and use it to extend to $\lambda \in \mathbb{C}$.

Problem 3.

Let \mathcal{H} be a Hilbert space and let $A \in \mathcal{L}(\mathcal{H})$. The adjoint of A is the operator A^{*} defined by $\left\langle v, A^{*} w\right\rangle=\langle A v, w\rangle$ for all $v, w \in \mathcal{H}$.
(i) Prove that $\|A\|=\left\|A^{*}\right\|$.
(ii) Prove that $\sigma\left(A^{*}\right)=\{\bar{\lambda}: \lambda \in \sigma(A)\}$ and that if A is invertible, then $\sigma\left(A^{-1}\right)=\left\{\lambda^{-1}: \lambda \in \sigma(A)\right\}$.
(iii) Prove that if A is self-adjoint, namely $A=A^{*}$, then

$$
\|A\|=\sup \left\{|\langle v, A v\rangle| /\|v\|^{2}: v \in \mathcal{H}\right\}
$$

(iv) Prove that if A is normal, namely $A A^{*}=A^{*} A$ then $r(A)=\|A\|$. Hint. Show $\|A\|^{2}=\left\|A A^{*}\right\|$.
(v) Prove that for any $B \in \mathcal{L}(\mathcal{H}), \sigma(A B) \cup\{0\}=\sigma(B A) \cup\{0\}$.

Hint. Compute $(\lambda 1-A B)\left(1+A(\lambda 1-B A)^{-1} B\right)$

Problem 4. Let $(X, \mu),(Y, \nu)$ be two measure spaces and let k be a measurable function on $X \times Y$ such that

$$
\int_{X \times Y}|k(x, y)|^{2} d \mu(x) d \nu(y)<\infty .
$$

Prove that $K: L^{2}(Y, \nu) \rightarrow L^{2}(X, \mu)$ defined by

$$
(K f)(x)=\int_{Y} k(x, y) f(y) d \nu(y)
$$

is such that for any bounded sequence $\left(f_{n}\right)_{n \in \mathbb{N}}$, the sequence $\left(K f_{n}\right)_{n \in \mathbb{N}}$ has a convergent subsequence. Such an operator is called compact.

