MATH 421/510, 2019WT2

Homework set 1 – due January 17

Problem 1. Let (S, \mathcal{T}) be a topological space. Let $X \subset S$. Define

 $\mathcal{T}_X = \{ O \cap X : O \in \mathcal{T} \}.$

(i) Prove that (X, \mathcal{T}_X) is a topological space $(\mathcal{T}_X$ is the *relative topology* induced by \mathcal{T}).

(ii) Assume that X is open. Prove that $A \subset X$ is open in X if and only if it is open in S.

(iii) Assume that X is closed. Prove that $A \subset X$ is closed in X if and only if it is closed in S.

Problem 2. Let M be a metric space. For any $y \in M, r > 0$, let $B_r(y) = \{z \in M : d(y, z) < r\}$. (i) Prove that the set \mathcal{T} of $X \subset M$ such that $x \in X$ implies $B_r(x) \subset X$ for some r > 0, together with \emptyset , is a topology.

(ii) Prove that M is first countable.

(iii) Prove that M is second countable if and only if it is separable.

(iv) Prove that M is Hausdorff.

Problem 3. Let S be an uncountable set of points. Let

$$\mathcal{T} = \{ Y \subset S : S \setminus Y \text{ is finite } \} \cup \{ \emptyset \}$$

(i) Prove that \mathcal{T} is a topology.

- (ii) Prove that $X \cap Y \neq \emptyset$ for any nonempty $X, Y \in \mathcal{T}$ (in particular, (S, \mathcal{T}) is not Hausdorff).
- (iii) Prove that there is no countable base at any $x \in S$.

(iv) Prove that $x = \lim_{n \to \infty} x_n$ for all $x \in S$ and all sequences $(x_n)_{n \in \mathbb{N}}$ in S obeying $x_n \neq x_m$ for all $n \neq m$.

Problem 4. (i) Let S be a first countable topological space. Let $(x_n)_{n \in \mathbb{N}}$ be a sequence in S. We say that x is a *cluster point* of $(x_n)_{n \in \mathbb{N}}$ if for every neighbourhood N_x of x, $x_n \in N_x$ for infinitely many n. Prove that x is a cluster point of $(x_n)_{n \in \mathbb{N}}$ iff there is a subsequence $(x_{n_k})_{k \in \mathbb{N}}$ that converges to x.

(ii) Let S = [0, 1], and let the non-empty sets of \mathcal{T} be defined by: $X \in \mathcal{T}$ if X^c is countable.

(a) Prove that [0, 1) = S

(b) Prove that there is no sequence $(x_n)_{n \in \mathbb{N}}$ in [0, 1) such that $\lim_{n \to \infty} x_n = 1$. Conclude that (S, \mathcal{T}) is not first countable.

Problem 5. A topological space S is called *disconnected* if there exist nonempty open sets U, V such that $U \cap V = \emptyset$ and $U \cup V = S$. Otherwise S is called *connected*. A subset of S is called connected/disconnected if it is connected/disconnected as a topological space with the relative topology inherited from S.

(i) Prove that S is connected if and only if the only subsets of S that are both open and closed are \emptyset and S.

(ii) Prove that if $\{E_{\alpha}\}_{\alpha \in I}$ is a collection of connected subsets of S such that $\bigcap_{\alpha \in I} E_{\alpha} \neq \emptyset$, then $\bigcup_{\alpha \in I} E_{\alpha}$ is connected.

(iii) Prove that if $X \subset S$ is connected, then \overline{X} is connected.

(iv) Prove that every point $x \in S$ is contained in a unique maximal connected subset of S and that this subset is closed. It is called the connected component of x.