Continuity

• In the common language, a "discontinuity" refers to some sort of "jump", sometimes in time, or in space. Intuitively, a function is said to be "continuous" at a point if there is no jump there. Mathematically:

A function \(f \) is continuous at \(a \) if

\[
\lim_{{x \to a}} f(x) = f(a).
\]

If \(f \) is defined on an open interval \((a, b)\), then \(f \) is said to be continuous if it is continuous at all \(a \in (a, b) \).

• Remarks: For \(f \) to be continuous at \(a \), we need:

 (i) Existence of the limit
 (ii) \(f \) is defined at \(a \) (will value \(f(a) \))
 (iii) The value of the limit is \(f(a) \)

 (in particular \(\lim_{{x \to a^-}} f(x) = f(a) = \lim_{{x \to a^+}} f(x) \)).

• \(f \) is right continuous at \(a \) if \(\lim_{{x \to a^+}} f(x) = f(a) \);

• \(f \) is left continuous at \(a \) if \(\lim_{{x \to a^-}} f(x) = f(a) \).

Moreover, to make sense of \(f \) is continuous on the closed interval \([a, b] \).
The arithmetic of limits provides rules of continuity:

If f and g are continuous at a, then

1. $f + g$ is continuous at a.
2. kf is continuous at a for any $k \in \mathbb{R}$.
3. f/g is continuous at a, provided $g(a) \neq 0$.

Hence:

(i) A polynomial is continuous everywhere.

(ii) A rational function is continuous in its domain.

Be careful:

$$f(x) = \begin{cases} x^2 - 2x^2 & x \neq 2 \\ 1 & x = 2 \end{cases}$$

Since $f'(x) = x$ whenever $x \neq 2$, f' is continuous on $(-\infty, 2) \cup (2, +\infty)$
but \(\lim_{x\to 2} f(x) = 4 \neq 1 = f(2) \) so that \(f \) is discontinuous at \(x = 2 \).

Something similar: if \(f \) is continuous at \(a \), and \(g \) is continuous at \(b \), will \(g(f(b)) = a \), then:

\[
[\lim_{x \to b} g(x)] = \lim_{x \to b} f(g(x))
\]

continuity of \(f \)
continuity of \(g \)

\(f \) at \(a = g(b) \)

Hence, continuity allows for:

\[
\lim f(g(x)) = f(\lim g(x))
\]

Example: \(h(x) = \sin(\sqrt{1-x^6}) \)

\[
h(x) = 1 \cdot g(x) \quad \text{will} \quad g(x) = \sqrt{1-x^6}
\]

Since \(g \) is well-defined and continuous whenever \(1-x^6 \geq 0 \), namely \(x \in [-1, 1] \), and \(f \) is continuous on \(\mathbb{R} \), we conclude that \(h \) is continuous on \([-1, 1] \).

\textbf{Remark:} You can use the fact that sine, cosine, exponentials are continuous on \(\mathbb{R} \), and that roots and power are continuous in their domains.
If \(f \) is continuous on \([a, b]\) (namely, its graph can be drawn without raising the pen), then \(f \) must take all possible values between \(f(a) \) and \(f(b) \).

Mathematically:

Let \(a < b \) and let \(f \) be continuous on \([a, b]\). Then for any \(F \) between \(f(a) \) and \(f(b) \), there exists (at least one) \(c \in [a, b] \) such that \(f(c) = F \).

Why is this useful (and hence why is continuity a very useful property?)? Because it tells us that equations have solutions! Indeed, any algebraic equation can be brought to the form (for example)

\[f(x) = 0. \]
But then: 1) \(f \) is continuous, it suffices to find one \(x_0 \in \mathbb{R} \) where \(f(x_0) \) is positive, one \(x_1 \in \mathbb{R} \) where \(f(x_1) \) is negative, to conclude that the equation has a solution between \(x_0 \) and \(x_1 \).

Example: The equation \(\sin \left(\frac{\pi x}{2} \right) = 1 - x \) has a solution in \([0,1]\).

Indeed the equation is equivalent to

\[f(x) = 0, \quad f(x) = \sin \left(\frac{\pi x}{2} \right) + x - 1. \]

and \(f \) is continuous on \(\mathbb{R} \). By the IVT, the existence of a solution follows since

\[f(0) = -1 < 0, \quad f(1) = 1 > 0. \]

Done \(\Box \).

Remark: The bisection method:

There is a zero between 0 and 1. Compute

\[f \left(\frac{1}{2} \right) = 0.2 \ldots > 0. \]

Hence there is a zero between 0 and \(\frac{1}{2} \).

\[f \left(\frac{1}{4} \right) = -0.3 \ldots < 0. \]

Hence there is a zero in \([\frac{1}{4}, \frac{1}{2}]\).

Repeat and obtain a better and better approximation of the solution.