Sketching graphs

- Recall: If f has an extremum at x_0 and if $f''(x_0)$ exists, then $f''(x_0) = 0$.
 - No local extrema are found either
 - at critical points, or
 - at singular points (where $f''(x_0)$ does not exist).

- At a maximum, f goes from increasing to decreasing.
 - At a minimum, f goes from decreasing to increasing.

- If $f'(x) > 0$, $x \in (a,b)$, then f is increasing on (a,b).
 - If $f'(x) < 0$, $x \in (a,b)$, then f is decreasing on (a,b).
 - If $f'(x) = 0$, $x \in (a,b)$, then f is constant on (a,b).

- Complement to the above:
 - Theorem: Let f be defined in a neighbourhood of x_0.
 1. If $f''(x_0) = 0$ and $f''(x_0) > 0$, then x_0 is a point of local minimum.
 2. If $f''(x_0) = 0$ and $f''(x_0) < 0$, then x_0 is a point of local maximum.

- This leads to a new definition: Let f be continuous on $[a,b]$ and so that $f''(x) > 0$ for all $x \in (a,b)$.
 - Second derivative!
Then \(f \) is \[\text{convex (or concave up).} \]

If, on the other hand, \(f''(x) \leq 0 \) for all \(x \in (a,b) \), then \(f \) is \[\text{concave (or concave down).} \]

Finally, if \(f''(x_0) = 0 \) and the concavity of \(f \) changes across \(x = x_0 \), then \(x_0 \) is an \[\text{inflection point.} \]

In other words, \(f \) is convex if its slope is increasing.

\[\text{Graphically,} \]

\[\text{convex} \quad \text{concave.} \]

\[x_0 \]

\[\text{Inflection point} \]

- Rephrasing the above, if \(f \) is convex in a neighborhood of a critical point \(x_0 \), then \(x_0 \) is a local minimum. If \(f \) is concave, then \(x_0 \) is a local maximum. \[\text{of } f \]

- Remark: Convexity is generally rephrased in the more intuitive notion that the region above the graph of the function is convex.

\[\text{Remark: Convexity is generally rephrased in the more} \]
\[\text{intuitive notion that the region above the} \]
\[\text{graph of the function is convex.} \]
The secant line is completely above the graph of \(f \).

\[y = \lambda x + (1 - \lambda y) \quad (\lambda \in (0, 1)) \]

Conversely, \(\frac{d}{dx} \left(\lambda x + (1 - \lambda y) \right) \leq 2 f(x) + (1 - 2) f(y) \).

- What about global extrema of \(f \) on \([a, b]\)?
 - They are to be found at:
 - critical points
 - singular points
 - the boundary of the domain \([a, b]\).
- Example: Find the local and global extrema of
 \[f(x) = 2x^\frac{5}{3} + 3x^\frac{2}{3} \]
 on \([-1, 1]\).

First:
\[f(x) = x^\frac{2}{3} (2x + 3) \]
so that:
\(f \) is continuous on \([-1, 1]\)
\(f \) is differentiable on
\([-1, 0) \cup (0, 1]\)
Differentiability at $x = 0$:

$$\lim_{h \to 0^+} h^{-\frac{3}{2}}(2h - 3) = \lim_{h \to 0^+} \frac{3 + 2h}{h^{\frac{3}{2}}} = 1 \cdot \infty$$

So f is not differentiable at 0 indeed.

 Everywhere else: $f''(x) = \frac{10x + 6}{3x^{\frac{1}{2}}}$

- Critical Points: $x_c = -\frac{3}{5} \in [-1, 1]$
- Singular Points: $x_s = 0 \in [-1, 1]$.

We compute f'' on $(-1, 0) \cup (0, 1)$:

$$f''(x) = \frac{2}{9x^{\frac{1}{2}}} (10x - 3)$$

- Inflection point: $x_i = \frac{3}{10} \in [-1, 1]$.

Conclusion:

- f is increasing on $[-1, -\frac{3}{5}]$ since $f'' > 0$ there.
- x_c is a point of local maximum since $f''(-\frac{3}{5}) < 0$.
- f is decreasing on $[-\frac{3}{5}, 0]$ since $f'' < 0$ there.
- f is increasing on $(0, 1]$ since $f'' > 0$ there.
- Hence x_s is a point of local minimum.
- f is concave on $[-1, 0]$ since $f'' < 0$ there and on $[0, \frac{3}{10}]$.
f is convex on $[\frac{3}{10}, 1]$.

*Values of f:

$f(-1) = 1$, $f(-\frac{3}{5}) \approx 1.28$, $f(0) = 0$, $f(1) = 5$

1 is the point of global maximum.

0 is the point of global minimum.

Sketch:

![Graph of a function showing concavity and points of increase and decrease.](image-url)