Disclaimer: Unless otherwise stated, all functions are defined on (a subset of) \(\mathbb{R} \), and taking values in \(\mathbb{R} \).

1. **Limits**

 A classical limit: the instantaneous velocity.

 Let \(x(t) \) be the position of a bicycle along an itinerary at time \(t \).

 The average velocity between times \(t_0 \) and \(t_n \) is given by
 \[
 \bar{v}(t_n) = \frac{\text{distance travelled}}{\text{total time}} = \frac{x(t_n) - x(t_0)}{t_n - t_0}
 \]

 But what is the instantaneous velocity at time \(t_0 \)?

 We need to consider infinitesimal time differences, i.e., very small \(t_n - t_0 \):

 \[
 v = \lim_{t_n - t_0 \to 0} \frac{x(t_n) - x(t_0)}{t_n - t_0}
 \]

 Graphically:

 ![Graphical representation of instantaneous velocity](image)
What do we mean?

That \(f(x) \) becomes arbitrarily close to \(L \) if \(x \) is small enough.

Definition: \[\lim_{x \to a} f(x) = L \]

If \(f(x) \) is arbitrarily close to \(L \), provided \(x \) is sufficiently close to \(a \).

Two examples:

(i) Let \(p(x) = 3x - 5 \)

Then \[\lim_{x \to 1} p(x) = -2 \]

Indeed: Pick \(\varepsilon > 0 \) (say \(\frac{1}{100} \) or \(\frac{1}{10000} \), ...).

If \(|x - 1| < \frac{\varepsilon}{3} \), then

\[|p(x) - (-2)| = |(3x - 5) + 2| = 3|x - 1| < \varepsilon. \]

In other words, the difference between \(p(x) \) and \(-2\) is at most \(\frac{1}{100} \) (or \(\frac{1}{10000}, \ldots \)) if \(x \) is not further than \(\frac{1}{300} \) (or \(\frac{1}{30000}, \ldots \)) from \(1 \).
(ii) Let \(f(x) = \sin \left(\frac{1}{x} \right) \).

Then \(\lim_{x \to 0} f(x) \) does not exist. (DNE).

Indeed:

In any interval around 0, the function \(y \) takes all values in \([-1, 1]\).

Remark: The actual value of \(f \) at \(x = 0 \) is irrelevant in the definition of the limit.

Let \(g(x) = \frac{2x-4}{x^2 + x - 6} \).

This function is not defined at \(x = 2 \).

However a plot of \(g \) gives

so we see: \(\lim_{x \to 2} g(x) = \frac{2}{5} \), and indeed

\[\lim_{x \to 2} g(x) = \lim_{x \to 2} \frac{2}{x+3} \quad \text{(Simplifying by } (x-2) \text{)} \]

is allowed away from \(x = 2 \).
\[\frac{2}{5} \]

- Simple arithmetic: Assume that
 \[\lim_{x \to 2} f(x) = F, \quad \lim_{x \to 2} g(x) = G. \]

 Then:
 \[\lim_{x \to 2} \left(\alpha f(x) + \beta g(x) \right) = \alpha F + \beta G. \]

 \[\lim_{x \to 2} f(x) g(x) = F \cdot G. \]

 \[\frac{f(x)}{g(x)} = \frac{F}{G}. \]

 If \(G \neq 0 \), then
 \[\lim_{x \to 2} \frac{f(x)}{g(x)} = \frac{F}{G}. \]

 \[\lim_{x \to 2} \left(f(x) \right)^n = F^n \]
 \[\lim_{x \to 2} \left(g(x) \right)^n = G^n \]
 (whenever the \(n \)th root is well-defined).

- Remarks: As noted above, it is sometimes necessary to simplify/transform the expression of \(f \) away from \(x = 2 \) to compute \(\lim_{x \to 2} f(x) \).

 It is sometimes hard to compute the value of the limit. For example, \(\lim_{x \to 0} \frac{\sin(x)}{x} = 1 \) holds. (we will develop methods for this later).

 Knowing that \(\lim_{x \to a} f(x) \) and \(\lim_{x \to a} g(x) \) are the rules above allow for the computation of the limit of rational functions and similar "composite" functions.