You are strongly encouraged to work on all four problems of this set. However, I will grade only two problems of your choice. Please indicate clearly on your solution sheet which problems you want to be considered.

Unless otherwise stated, all C^*-algebras have a unit.

Problem 1. Let A be a C^*-algebra and let ω be a state over A.

(i) Let $N = \{ A \in A : \omega(A^*A) = 0 \}$ prove that $A \in A, N \in N$ implies that $AN \in N$.

(ii) For any $A \in A$, denote $\psi_A = \{ A \in A : \exists N \in N : A = A + N \}$ and let h be the set of such equivalence classes. Prove that

$$\langle \psi_A, \psi_B \rangle = \omega(A^*B)$$

is independent of the representatives A, B and defines an inner product on h.

(iii) Prove that the linear map $\pi : A \to B(h)$ defined by

$$\pi(A)\psi_B = \psi_{AB}$$

is bounded, and a *-morphism, namely

$$\pi(A^*) = \pi(A)^*, \quad \pi(AB) = \pi(A)\pi(B).$$

(iv) Denote $\Omega = \psi_I \in h$. Prove that

$$\omega(A) = \langle \Omega, \pi(A)\Omega \rangle. \quad (1)$$

Remark. h can be completed to a Hilbert space H and π extended by boundedness to all of H. The triple (H, π, Ω) is called the GNS representation of A associated with ω. In particular, the set $\{ \pi(A)\Omega : A \in A \}$ is dense in H. This is a useful property for Problem 2.

Problem 2. Same assumptions as in Problem 1.

(i) Prove that the GNS representation is unique up to unitary equivalence. More precisely, given any two representations $(H_i, \pi_i, \Omega_i), i = 1, 2$, satisfying (1) for the same state ω, construct a unitary intertwiner $U : H_1 \to H_2$:

$$U\pi_1(A) = \pi_2(A)U, \quad U\Omega_1 = \Omega_2.$$

(ii) Let α be a *-automorphism of A and ω be an α-invariant state:

$$\omega \circ \alpha = \omega.$$

Prove that there is a unique unitary operator U on the GNS Hilbert space H_{ω} such that $\pi_{\omega}(A)U = U\pi_{\alpha}(\alpha(A))$ for $A \in A$ and $U\Omega_{\omega} = \Omega_{\omega}$.

Hint: Use (i).
Problem 3. Consider the C*-algebra $A = B(H)$ of bounded linear operators on a Hilbert space H. Let $\rho = \rho^*$ be a strictly positive density matrix on H, namely $\rho^* \leq I$, $\text{Tr} (\rho) = 1$. Let
$$\omega(A) = \text{Tr} (\rho A)$$
be the corresponding state. Consider the triple $(H_\rho, \pi_\rho, \Omega_\rho)$ defined as follows:

- H_ρ is the set of Hilbert-Schmidt operators (namely those $T \in B(H)$ such that $\text{Tr}(T^*T) < \infty$), with the scalar product $\langle T, S \rangle_{H_\rho} := \text{Tr}(T^*S)$.
- For each $A \in A$, let $\pi_\rho(A) : H_\rho \rightarrow H_\rho$ be defined by $\pi_\rho(A)T := AT$ for $T \in H_\rho$.
- $\Omega_\rho := \rho^{1/2}$.

(i) Prove that Ω_ρ is a unit vector in H_ρ.
(ii) Prove that π_ρ is a faithful representation of A into $B(H_\rho)$, namely that $\text{Ker} (\pi_\rho) = \{0\}$.

Hint: In any Hilbert space, $\|v\| = \sup_{\|u\|=1} |\langle u, v \rangle|$.
(iii) Prove that ρ_ρ is a cyclic vector for the representation π_ρ, i.e. that the set $\{\pi_\rho(A)\Omega_\rho : A \in A\}$ is dense in H_ρ.
(iv) Prove that $\omega(A) = \langle \Omega_\rho, \pi_\rho(A)\Omega_\rho \rangle$ for all $A \in A$.

Problem 4. Let A be the CAR algebra over the Hilbert space H.
(i) Use the CAR to prove that $\|b(f)\| = \|b^*(f)\| = \|f\|_H$.
(ii) Use the CAR to compute the spectrum of $b(f), b^*(f)$ and $b^*(f)b(f)$.
(iii) Let now $H = l^2(\Lambda)$, where Λ is a finite set and let $N_\Lambda = \sum_{x \in \Lambda} b_x^*b_x$ where $b_x = b(\delta_x)$ acting on Fock space. Prove that $\sigma(N) = \{0, 1, \ldots |\Lambda|\}$.
(vi) Prove that for any $\theta \in \mathbb{R}$,
$$e^{i\theta N}b(f)e^{-i\theta N} = b(e^{i\theta} f).$$

Hint. Uniqueness for the solution of an ODE. Note that the map $f \mapsto b(f)$ is antilinear.
(v) Let A_X^+ be the even subalgebra of A and let $A \in A_X^+, B \in A_Y$. Prove that $[A, B] = 0$ whenever $X \cap Y = \emptyset$.

Hint. Reduce to monomials in creation / annihilation operators.