Problem 1. Compute

(i) \(\int_\alpha z \, dz \),
(ii) \(\int_\alpha \bar{z} \, dz \),
(iii) \(\int_\alpha \text{Re}(z) \, dz \),

along the polygonal curve \(0 \to 1+i \to 2 \).

Problem 2. (i) If \(\alpha \) is the straight line from \(i \) to \(-1 \), show without computing the integral that

\[\left| \int_\alpha \frac{1}{z^2} \, dz \right| \leq 2\sqrt{2}. \]

(ii) Let \(k > 0 \). Show that

\[\lim_{R \to +\infty} \left| \int_{\alpha_R} e^{ikz} \, dz \right| = 0 \]

where \(\alpha_R \) is the semi-circle of radius \(R \) centred at the origin.

(iii) Show that

\[\lim_{R \to +\infty} \left| \int_{\gamma_R} e^{-z^2} \, dz \right| = 0 \]

where \(\gamma_R \) is vertical line segment from \(R \) to \(R + ih \), \(h > 0 \) fixed.

Problem 3. (i) Compute

\[\int_\alpha \text{Log}(z) \, dz \]

where \(\alpha \) is the straight line from \(1 \) to \(i \).

(ii) Compute

\[\int_{\alpha_{\pm}} \bar{z} \, dz \]

where \(\alpha_{+} \), resp. \(\alpha_{-} \), is the semi-circle running from \(1 \) to \(-1 \) in the upper, resp. lower, half-plane.

Problem 4. Let \(\alpha = a + ib \) be any non-zero complex number, and let \(f : \mathbb{R} \to \mathbb{C} \) be defined by \(f(t) = e^{at} \). Use the fact that \(F(t) = \alpha^{-1}e^{at} \) is an antiderivative of \(f \) to show that

\[\int e^{at} \cos(bt) \, dt = \frac{e^{at}}{a^2 + b^2} \left(a \cos(bt) + b \sin(bt) \right), \quad \int e^{at} \sin(bt) \, dt = \frac{e^{at}}{a^2 + b^2} \left(a \sin(bt) - b \cos(bt) \right). \]

Conclude that for \(a > 0 \),

\[\int_0^\infty e^{-at} \cos(bt) \, dt = \frac{a}{a^2 + b^2}, \quad \int_0^\infty e^{-at} \sin(bt) \, dt = \frac{b}{a^2 + b^2}. \]