Problem 1. Give the matrix of the following linear transformation with respect to the canonical bases of \(\mathbb{R}^3 \) and \(\mathbb{R}^2 \). \(\varphi : \mathbb{R}^3 \rightarrow \mathbb{R}^2 \), with \(\varphi \left(\begin{pmatrix} x \\ y \\ z \end{pmatrix} \right) = \begin{pmatrix} 2x - 3z \\ -x - y - z \end{pmatrix} \).

Problem 2. Let
\[
\varphi : M_{2 \times 2} \rightarrow \mathbb{R} \\
A \mapsto \text{Tr}(A)
\]
be the trace map.
(i) Prove that \(\varphi \) is linear.
(ii) Compute its matrix with respect to the canonical basis of \(M_{2 \times 2} \) and \{1\}.
(iii) For any two matrices \(A, B \in M_{2 \times 2} \), let
\[
[A, B] = AB - BA
\]
be their **commutator**. Prove that \([A, B] \in \mathcal{N}(\varphi) \) for any \(A, B \in M_{2 \times 2} \).

Problem 3. Let
\[
\varphi : M_{2 \times 2} \rightarrow M_{2 \times 2} \\
A \mapsto A^T
\]
be the transposition map (see Assignment 4, Problem 3).
(i) Compute its matrix in the canonical basis of \(M_{2 \times 2} \).
(ii) Compute its matrix in the following basis:
\[
E = \left\{ \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \right\}.
\]

Problem 4. A linear map \(\varphi : V \rightarrow W \) between two vector spaces of the same dimension is called **invertible** if there exists a linear map \(\psi : W \rightarrow V \) such that \(\varphi \circ \psi = \text{id}_W \) and \(\psi \circ \varphi = \text{id}_V \), where \(\text{id}_V \) is the identity map, \(\text{id}_V(x) = x \) for all \(x \in V \), \(\text{id}_W(y) = y \) for all \(y \in W \).

Let \(E \), respectively \(F \), be a basis of \(V \), respectively \(W \). We denote the inverse by \(\varphi^{-1} \).

Prove that the matrix \((\varphi)^E_F \) is invertible if the map \(\varphi \) is invertible, with matrix inverse given by
\[
[(\varphi)^E_F]^{-1} = (\varphi^{-1})^F_E.
\]

Problem 5. Let \(Q : V \rightarrow V \) be a projection, namely \(Q \circ Q = Q \) (see Assignment 4, Problem 1).

Exhibit a basis \(E = \{e_1, \ldots, e_n\} \) and a \(k \in \{1, \ldots, n\} \) such that
\[
(Q)^E_E = \begin{pmatrix} I_k & 0 \\ 0 & 0 \end{pmatrix}
\]
where \(I_k \in M_{k \times k} \) is the identity matrix, and the other blocks are \(k \times (n-k), (n-k) \times k, (n-k) \times (n-k) \) matrices of zeroes.