SHARP BERTINI THEOREM FOR PLANE CURVES OVER FINITE FIELDS

SHAMIL ASGARLI

Abstract. We prove that if C is a reflexive smooth plane curve of degree d defined over a finite field \mathbb{F}_q with $d \leq q + 1$, then there is an \mathbb{F}_q-line L that intersects C transversely. We also prove the same result for non-reflexive curves of degree $p + 1$ and $2p + 1$ where $q = p^r$.

1. Introduction

A classical theorem of Bertini states that if X is a smooth quasi-projective variety in \mathbb{P}^n defined over an infinite field k, then a general hyperplane section of X is smooth. Specializing to the case when $C \subseteq \mathbb{P}^2$ is a smooth plane curve, it follows that there exists a line L (defined over k) such that L intersects C transversely, meaning that $C \cap L$ consists of d distinct geometric points where $d = \deg(C)$. But when $k = \mathbb{F}_q$ is a finite field, it is possible to have a smooth plane curve $C \subseteq \mathbb{P}^2$ such that every line L defined over \mathbb{F}_q is tangent to the curve C (see Example 2.A below). Moreover, Poonen’s Bertini Theorem [Poo04, Theorem 1.2] guarantees that such smooth curves, where all the \mathbb{F}_q-lines are tangent, do exist in every sufficiently large degree (see Example 2.B below). With a view toward an effective version of Poonen’s theorem, one can ask the following:

Question 1.1. Suppose $C \subseteq \mathbb{P}^2$ is a smooth plane curve defined over \mathbb{F}_q. Let $d = \deg(C)$. What conditions on q and d will ensure that there is a line $L \subseteq \mathbb{P}^2$ defined over \mathbb{F}_q such that L meets C transversely?

Let us call L a good line if L meets C transversely. We expect that if q is large with respect to d, then good lines will exist. Indeed, if $q \geq d(d-1)$, then the dual curve C^* cannot be space-filling, i.e. $C^*(\mathbb{F}_q) \neq (\mathbb{P}^2)^*(\mathbb{F}_q)$. This is because $\deg(C^*) \leq d(d-1) \leq q$ and a curve of degree of at most q cannot go through all the points of $(\mathbb{P}^2)^*(\mathbb{F}_q)$. Any point in $(\mathbb{P}^2)^*(\mathbb{F}_q) \setminus C^*(\mathbb{F}_q)$ represents a good line $L \subseteq \mathbb{P}^2$ defined over \mathbb{F}_q. A generalization of this observation to higher dimensions is proved by Ballico [Bal03, Theorem 1].

In this paper, we improve the quadratic bound $q \geq d(d-1)$ to the linear bound $q \geq d - 1$.

Theorem 1.2. If C is a smooth reflexive plane curve defined over \mathbb{F}_q with $\deg(C) \leq q + 1$, then there is an \mathbb{F}_q-line L such that L intersects C transversely.

The theorem is sharp in a sense that the statement cannot be improved to $q \geq d - 2$. There is a counter-example when $q = d - 2$ (see Example 2.A). The “reflexive” assumption on C is same as saying that C has finitely many flex points (see Section 2). As a natural follow-up, we may ask:

Question 1.3. Does Theorem 1.2 hold when C is non-reflexive?

We prove a partial result in this direction:
Theorem 1.4. Let C be a smooth non-reflexive plane curve of degree $p + 1$ or $2p + 1$ defined over \mathbb{F}_q where $q = p^r$ with $r \geq 2$. Then there is an \mathbb{F}_q-line L such that L intersects C transversely.

Finally, in the last section of the paper (Section 4), we focus exclusively on Frobenius non-classical curves, which are non-reflexive curves of special kind. As we will see, Question 1.3 in this case is equivalent to a statement about collinear \mathbb{F}_q-points on the curve.

Conventions. In order to avoid various pathologies, we will assume throughout the paper that the characteristic of the field is $p > 2$.

Acknowledgements. I would like to thank my advisor Brendan Hassett for the unwaivering support and constant encouragement. I am especially grateful to Felipe Voloch for suggesting to investigate the case of degree 7 non-reflexive curves over \mathbb{F}_9, which led to Theorem 1.4. I also thank Dan Abramovich, Dori Bejleri, Herivelto Borges, Pol van Hoften and Giovanni Inchiostro for insightful discussions and useful comments on the manuscript.

2. Reflexive Curves

In this section we review the theory of reflexive plane curves, and prove Theorem 1.2. If C is a plane curve defined over a field k, we can consider the Gauss map $\varphi : C \to (\mathbb{P}^2)^*$ that associates to each smooth point p of C its tangent line. The dual curve C^* is defined to be the closure of $\varphi(C)$ inside $(\mathbb{P}^2)^*$. By looking at the Gauss map for the dual curve, we get $\varphi' : C^* \to C^{**}$. In what follows, we will identify \mathbb{P}^2 and $(\mathbb{P}^2)^*$.

Definition 2.1. The curve C is called reflexive if $C = C^{**}$ and $\varphi' \circ \varphi : C \to C^{**}$ is the identity map.

A theorem of Wallace [Wal56] asserts that C is reflexive if and only if φ is separable. As a result, all smooth plane curves in characteristic zero are reflexive. Recall that a point P of C is called a flex point if the tangent line at P meets the curve C at P with multiplicity at least 3. When $\text{char}(k) = p > 2$, we have the following characterization: C is reflexive if and only if C has finitely many flex points [Par86, Proposition 1.5].

Before we prove Theorem 1.2, here are some counter-examples of smooth curves C where all the lines defined over \mathbb{F}_q are tangent to C (so that no good line exists).

Example 2.A. Let C be a smooth plane curve with $\text{deg}(C) = q + 2$ such that $\#C(\mathbb{F}_q) = \#\mathbb{P}^2(\mathbb{F}_q)$. Such curves exist, and have been extensively studied by Homma and Kim [HK13]. For such a curve C, every \mathbb{F}_q-line L intersects C at $q + 2$ points (counted with multiplicity). But $q + 1$ of these points are already accounted by the points of $L(\mathbb{F}_q) = \mathbb{P}^1(\mathbb{F}_q)$. Thus, the residual intersection multiplicity results from L being tangent to C at one of the \mathbb{F}_q-points.

Example 2.B. Fix a finite field \mathbb{F}_q. Let $\{L_1, ..., L_{q^2 + q + 1}\}$ be all the \mathbb{F}_q-lines in the plane. Pick distinct (geometric) points $P_i \in L_i$ for each i. The condition that C is tangent to L_i at P_i is a statement about vanishing of the first few coefficients in the Taylor expansion at these finitely many points. By applying Poonen’s Bertini theorem with Taylor conditions [Poo04, Theorem 1.2], there exists some d_0 such that for every $d \geq d_0$, there exists a smooth plane curve $C \subseteq \mathbb{P}^2$ of degree d such that L_i is tangent to C at P_i. In particular, all \mathbb{F}_q-lines $L \subseteq \mathbb{P}^2$ are tangent to C. A closer inspection of the proof reveals that the integer d_0 is in the order of q^2 (essentially because we imposed $q^2 + q + 1$ local conditions).

We will now prove the main theorem of the present paper.
Theorem 1.2. If C is a smooth reflexive plane curve defined over \mathbb{F}_q with $\deg(C) \leq q + 1$, then there is an \mathbb{F}_q-line L such that L intersects C transversely.

Proof. Let Φ be the Frobenius map defined on points by $\Phi([X : Y : Z]) = [X^q : Y^q : Z^q]$. We will write $T_P(C)$ for the tangent line to C at a (geometric) point P. Set

$$N = \#{\{P \in C(\mathbb{F}_q) : \Phi(P) \in T_P(C)\}}$$

which is finite because C is reflexive [HV90]. The following inequality is proved in [HKT08, Theorem 8.41]:

$$(*) \quad 2 \cdot \#C(\mathbb{F}_q) + N \leq d(q + d - 1)$$

under the assumption that C has finitely many flex points and that characteristic of the field is $p > 2$. This is the step where we use the hypothesis that C is reflexive.

Assume, to the contrary, that every \mathbb{F}_q-line is tangent to the curve C at some (geometric) point. Let us divide these lines into two groups: if L is tangent to C at an \mathbb{F}_q-rational point, we will call L a rational tangent. Otherwise, we will call L a special tangent. Since every \mathbb{F}_q-line is tangent to C, and there are $q^2 + q + 1$ lines defined over \mathbb{F}_q, we get

$$\#{\{\text{rational tangents}\}} + \#{\{\text{special tangents}\}} = q^2 + q + 1$$

and

$$\#{\{\text{rational tangents}\}} \leq \#C(\mathbb{F}_q)$$

Now, if L is a special tangent, it is tangent to the curve C at a non-\mathbb{F}_q-point P. Then L is also tangent to C at $P, \Phi(P), \Phi^2(P), \ldots, \Phi^{e-1}(P)$ where $e = [k(P) : \mathbb{F}_q]$ is the degree of the point P. Since $e \geq 2$, the line L contributes at least 2 elements to N. As a result,

$$2 \cdot \#{\{\text{special tangents}\}} \leq N$$

Combining all the inequalities above, we obtain that

$$q^2 + q + 1 = \#{\{\text{rational tangents}\}} + \#{\{\text{special tangents}\}}$$

(using $(*)$)

$$\leq \#C(\mathbb{F}_q) + \frac{N}{2} \leq \frac{1}{2}d(q + d - 1)$$

$$\leq \frac{1}{2}(q + 1)(q + (q + 1) - 1) = \frac{1}{2}(q + 1)(2q) = q^2 + q$$

which is a contradiction. \Box

When $q = p$ is a prime, every smooth curve of degree at most p is reflexive. Moreover, Pardini [Par86, Proposition 3.7] has shown that every smooth non-reflexive curve of degree $p + 1$ (over any field of characteristic p) is projectively equivalent to the curve given by the equation $xyp + yzp + zxp = 0$. For this curve, many good lines exist. For instance, take two \mathbb{F}_p-points on the curve, and join them with a line L. Then L will intersect C transversely.

Consequently, we deduce the result for all smooth plane curves over \mathbb{F}_p where p is prime.

Corollary 2.2. If C is a smooth plane curve defined over \mathbb{F}_p with $\deg(C) \leq p + 1$ where p is a prime, then there is an \mathbb{F}_p-line L such that L intersects C transversely.
3. Non-reflexive curves

In this section, we will restrict attention to non-reflexive curves and prove Theorem 1.4. Let $C \subseteq \mathbb{P}^2$ be a smooth non-reflexive curve defined over \mathbb{F}_q with $q = p^r$ where $r \geq 2$. Pardini [Par86, Corollary 2.4] has shown that C is defined by an equation of the form:

$$a^p x + b^p y + c^p z = 0$$

where $a, b, c \in \mathbb{F}_q[x, y, z]$ are homogeneous polynomials of degree $t \geq 1$. In particular, $\deg(C) = tp + 1$.

We establish a Bertini-type theorem for the case $t = 1$ and $t = 2$.

Theorem 1.4. Let C is a smooth non-reflexive plane curve of degree $p + 1$ or $2p + 1$ defined over \mathbb{F}_q where $q = p^r$ with $r \geq 2$. Then there is an \mathbb{F}_q-line L such that L intersects C transversely.

Proof. When $\deg(C) = p + 1$, then C is projectively equivalent to the curve given by the equation $xy^p + yz^p + zx^p = 0$, for which many good lines L exist (see the discussion before Corollary 2.2). For the rest of the proof, we will assume that $\deg(C) = 2p + 1$. Since C is non-reflexive, by [Par86, Corollary 4.3] the degree of the dual curve is

$$\deg(C^*) = \frac{d(d-1)}{p} = \frac{(2p+1)(2p)}{p} = 4p + 2$$

For $p \geq 5$, we observe that $\deg(C^*) = 4p + 2 \leq p^r \leq q$, so C^* cannot contain all of $(\mathbb{P}^2)^*(\mathbb{F}_q)$, and hence any point $L \in (\mathbb{P}^2)^*(\mathbb{F}_q) \setminus C^*(\mathbb{F}_q)$ will be a desired line that intersects C transversely.

When $p = 3$, the inequality $\deg(C^*) = 4p + 2 = 14 \leq p^r = q$ still holds for $r \geq 3$. The only case that requires a separate analysis is $(p, r) = (3, 2)$, which corresponds to degree $2 \cdot 3 + 1 = 7$ curve defined over $\mathbb{F}_{3^2} = \mathbb{F}_9$. The rest of the proof is devoted to studying this remaining case.

Let C be a smooth non-reflexive curve of degree 7 defined over \mathbb{F}_9. Assume, to the contrary, that all the lines defined over \mathbb{F}_9 are tangent to C. Following the same terminology used in the proof of Theorem 1.2, we call L a **rational tangent** if L is tangent to C at some \mathbb{F}_9-point. Otherwise, L is called a **special tangent**. Since C is non-reflexive, each tangent line L must intersect the curve at the tangency point with multiplicity ≥ 3 (Proposition 1.5 in [Par86]). It follows that:

1. If L is a rational tangent, then $L \cap C$ contains at most five \mathbb{F}_9-points.
2. If L is a special tangent, then $L \cap C$ contains a conjugate pair of \mathbb{F}_{81}-points and a single \mathbb{F}_9-point. In symbols, $L \cap C = \{Q, Q^\sigma, P\}$ where $Q \in \mathbb{P}^2(\mathbb{F}_{81}) \setminus \mathbb{P}^2(\mathbb{F}_9)$ and $P \in \mathbb{P}^2(\mathbb{F}_9)$.

Consider the following incidence correspondence of points and lines,

$$\mathcal{I} = \{(P, L) : L \in (\mathbb{P}^2)^*(\mathbb{F}_9) \text{ and } P \in (C \cap L)(\mathbb{F}_9)\}$$

Each $P \in C(\mathbb{F}_9)$ is contained in $q + 1 = 10$ different \mathbb{F}_9-lines. Therefore, $\#\mathcal{I} = \#C(\mathbb{F}_9) \cdot 10$. On the other hand, using (1) and (2) above, each special tangent L contributes 1 point, while each rational tangent L contributes at most 5 points to $\#\mathcal{I}$. Thus, $\#\mathcal{I} \leq S + 5R$ where S and R are the number of special and rational tangents, respectively. We deduce that

$$\#C(\mathbb{F}_9) \cdot 10 \leq S + 5R$$
Since \(\#C(\mathbb{F}_9) \geq R \), we get \(10R \leq S + 5R \), which implies \(5R \leq S \). Since \(S + R = 9^2 + 9 + 1 = 91 \), we have \(5(91 - S) \leq S \), so that \(S \geq \frac{5 \cdot 91}{6} = 75.833... \). Thus, \(S \geq 76 \).

Next, take any rational tangent \(L_0 \). Every special tangent line intersects \(L_0 \) in one of its ten \(\mathbb{F}_9 \)-points. Since \(\frac{S}{10} \geq \frac{76}{10} \geq 7 \), there exists \(P_0 \in L_0(\mathbb{F}_q) \) such that there are at least 8 special tangent lines that pass through \(P_0 \). By looking at the ten \(\mathbb{F}_9 \)-lines passing through \(P_0 \), we can estimate \(\#C(\mathbb{F}_9) \) as follows. Each of the 8 special tangents will contribute at most 1 rational point, while the remaining (at most 2) rational tangents will contribute at most 5 rational points. Thus, one gets \(\#C(\mathbb{F}_9) \leq 8 + 2 \cdot 5 = 18 \). Consider the incidence correspondence:

\[
\mathcal{J} = \{(P, L) : L \text{ is a special tangent and } P \in (C \cap L)(\mathbb{F}_9)\}
\]

By (1) above, every special tangent contains exactly one \(\mathbb{F}_9 \)-point of \(C \), so that \(\#\mathcal{J} = S \). As a result,

\[
S = \#\mathcal{J} = \sum_{P \in C(\mathbb{F}_9)} \#\{\text{special tangents passing through } P\}
\]

Since

\[
\frac{S}{\#C(\mathbb{F}_9)} \geq \frac{76}{18} > 4
\]

there exists a point \(P \in C(\mathbb{F}_9) \) such that at least 5 special tangents pass through \(P \). Consider the corresponding line \(P^* \) in the dual space \((\mathbb{P}^2)^*\), which consists of all lines passing through \(P \). Let us look at the intersection of the line \(P^* \) and the dual curve \(C^* \) inside \((\mathbb{P}^2)^*\). The intersection has all the ten \(\mathbb{F}_9 \)-points of \(P^* \) since all the \(\mathbb{F}_9 \)-lines are tangent to \(C \). However, each of the special tangents is bitangent to \(C \), so it is a node in \(C^* \), and hence will contribute 2 to the intersection. It follows that \(P^* \cap C^* \) has at least 5·2+5 = 15 intersections, contradicting the fact that \(\deg(C^*) = 14 \). \(\square \)

Remark. As we saw above, the hardest part of the proof is the case \(p = 3 \). This answers a question of Felipe Voloch, who asked in a private communication, whether or not there exists a transverse line for a degree 7 smooth non-reflexive curve defined over \(\mathbb{F}_9 \). The small primes still persist when we try to extend Theorem 1.3 to non-reflexive curves of degree \(3p + 1 \). Indeed, if \(C \) is a smooth non-reflexive curve of degree \(3p + 1 \), then \(\deg(C^*) = \frac{(3p+1)(3p)}{p} = 9p + 3 \leq p^2 \leq q \) for \(p \geq 11 \); the usual argument shows that \((C^*)(\mathbb{F}_q) \neq (\mathbb{P}^2)^*(\mathbb{F}_q) \), implying that good lines exist for \(p \geq 11 \). However, the main difficulty lies with the primes \(p = 3, 5, 7 \).

4. **Connection to Frobenius non-classical curves**

In this section, we observe the implications of a Bertini-type theorem for a special class of non-reflexive curves, known as Frobenius non-classical curves.

Definition 4.1. Let \(C \subseteq \mathbb{P}^2 \) be a smooth plane curve defined over \(\mathbb{F}_q \). Then \(C \) is called **Frobenius non-classical** if \(\Phi(P) \in T_P(C) \) for every \(P \), where \(T_P(C) \) is the tangent line to \(C \) at the point \(P \), and \(\Phi : \mathbb{P}^2 \rightarrow \mathbb{P}^2 \) is the \(q \)-th power Frobenius map.

We should remark that the usual definition of Frobenius non-classical is stated differently (by looking at the order sequence of \(C \)), but the definition given above is equivalent in the case of smooth plane curves [HV90, Proposition 1].
Example. Let C be the curve defined over \mathbb{F}_{q^2} by the equation
\[x^{q+1} + y^{q+1} + z^{q+1} = 0 \]
It can be checked that C is a smooth Frobenius non-classical curve for \mathbb{F}_{q^2}.

If C is a smooth Frobenius non-classical plane curve of degree d defined over \mathbb{F}_q where $q = p^r$, then it is known that C is non-reflexive [HV90, Proposition 1] and $\sqrt{q} + 1 \leq d \leq \frac{q'}{q-1}$ where q' is the generic order of contact of the curve with a tangent line [HV90, Propositions 5 and 6]. In particular, $\deg(C) \leq q - 1$ always holds. So Question 1.3 is equivalent to:

Question 4.2. If C is a smooth Frobenius non-classical plane curve defined over \mathbb{F}_q, does there exist an \mathbb{F}_q-line L such that L intersects C transversely?

The existence of such a line L can be verified for the curve $x^{q+1} + y^{q+1} + z^{q+1} = 0$, and more generally, for the curve given by the equation
\[x^{q^{n-1}+\cdots+q+1} + y^{q^{n-1}+\cdots+q+1} + z^{q^{n-1}+\cdots+q+1} = 0 \]
where $n \geq 2$. These curves are indeed smooth and Frobenius non-classical with respect to the field \mathbb{F}_{q^n} [HV90, Theorem 2].

If the Question 4.2 has an affirmative answer, then it implies that there is a line L such that L intersects C transversely. Thus, any good (transverse) line L intersects C at $\deg(C)$ distinct \mathbb{F}_q-points. This allows us to reformulate Question 4.2 as follows:

Question 4.3. If C is a smooth Frobenius non-classical plane curve defined over \mathbb{F}_q, then does C have $d = \deg(C)$ many \mathbb{F}_q-rational points on a line?

The Question 4.3 is motivated by the fact that Frobenius non-classical curves have many \mathbb{F}_q-points. In fact, the \mathbb{F}_q-points on these curves have been used in [GPTU02] and [Bor09] to construct certain complete arcs in the plane. Moreover, the following theorem due to Hefez and Voloch [HV90, Theorem 1] gives the exact number of \mathbb{F}_q-points on any smooth Frobenius non-classical plane curve:

Theorem 4.4. (Hefez-Voloch) If $C \subseteq \mathbb{P}^2$ is a smooth Frobenius non-classical curve of degree d defined over \mathbb{F}_q, then
\[\#C(\mathbb{F}_q) = d(q - d + 2) \]

We can apply Theorem 4.4 directly to get an estimate on the number of collinear points of C. Consider the incidence correspondence $\{(P, L) : L \in (\mathbb{P}^2)^*(\mathbb{F}_q) \text{ and } P \in (L \cap C)(\mathbb{F}_q)\}$. Since each \mathbb{F}_q-point P is contained in $q + 1$ lines,
\[\#C(\mathbb{F}_q)(q + 1) = \sum_{P \in C(\mathbb{F}_q)} (q + 1) = \sum_L \#(L \cap C)(\mathbb{F}_q) \]
The sum on the right runs over all $q^2 + q + 1$ lines. Thus, an \mathbb{F}_q-line on average contains
\[\frac{\#C(\mathbb{F}_q)(q + 1)}{q^2 + q + 1} = \frac{d(q - d + 2)(q + 1)}{q^2 + q + 1} > \frac{d(q - d + 2)}{q + 1} > d \left(1 - \frac{d}{q + 1} \right) \]
\mathbb{F}_q-points of C. As q gets larger, this number approaches d. This heuristic suggests that Question 4.3 may have an affirmative answer.
REFERENCES

