1 Topics

- L’Hôpital’s rule

2 L’Hôpital

Recall: limits of quotients

Suppose

\[\lim_{x \to a} f(x) = A, \quad \lim_{x \to a} g(x) = B; \quad A, B \in \mathbb{R} \]

(i) If \(B \neq 0 \), then

\[\lim_{x \to a} \frac{f(x)}{g(x)} = \frac{A}{B} \]

(ii) If \(B = 0 \) and \(f(x)/g(x) > 0 \) near \(x = a \)

\[\lim_{x \to a} \frac{f(x)}{g(x)} = +\infty \]

(iii) If \(B = 0 \) and \(f(x)/g(x) < 0 \) near \(x = a \)

\[\lim_{x \to a} \frac{f(x)}{g(x)} = -\infty \]

(iv) If

\[\lim_{x \to a} f(x) = A, \quad \lim_{x \to a} g(x) = \pm\infty \]

then

\[\lim_{x \to a} \frac{f(x)}{g(x)} = 0 \]

Definition 1 (Indeterminate form). \(\lim_{x \to a} \frac{f(x)}{g(x)} \) is called an indeterminate form of type \(\frac{0}{0} \) if

\[\lim_{x \to a} f(x) = 0, \quad \lim_{x \to a} g(x) = 0 \]

We can define other types of indeterminate forms
Definition 2 (Indeterminate form). \(\lim_{x \to a} \frac{f(x)}{g(x)} \) is called an *indeterminate form* of type \(\frac{\infty}{\infty} \) if

\[
\lim_{x \to a} f(x) = \pm \infty, \quad \lim_{x \to a} g(x) = \pm \infty
\]

Similarly, we can define indeterminate forms for

\[
\lim_{x \to a^+} \frac{f(x)}{g(x)}, \quad \lim_{x \to a^-} \frac{f(x)}{g(x)}, \quad \lim_{x \to \infty} \frac{f(x)}{g(x)}, \quad \lim_{x \to -\infty} \frac{f(x)}{g(x)}
\]

How to handle these? At the beginning of the course we used several techniques (mainly by cancellation).

How about this:

\[
\lim_{x \to 0} \frac{\sin(x)}{\log(1 + x)}
\]

Note that as \(x \to 0 \)

- \(\sin(x) \to \sin(0) = 0 \)
- \(\log(1 + x) \to 1 = 0 \)

This seems to require a new technique

\[
\lim_{x \to 0} \frac{\sin(x)}{\log(1 + x)} = \lim_{x \to 0} \frac{\sin(x)}{x} \cdot \lim_{x \to 0} \frac{x}{\log(1 + x)}
\]

\[
= \lim_{x \to 0} \frac{\sin(x)}{x} \cdot \lim_{x \to 0} \frac{x}{\log(1 + x)}
\]

\[
= \frac{\sin'(0)}{\log'(1 + 0)} = \frac{\cos(0)}{1} = 1
\]

This technique can be generalized to the famous L'Hôpital’s rule.

L'Hôpital’s rule simplifies limits of the form

\[
\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)}
\]

under the following conditions.
Theorem 1 (L’Hôpital’s rule). If

(1) the quotient is an indeterminate form
 - \(\lim_{x \to a} f(x) = 0 = \lim_{x \to a} g(x) \) for \(\frac{0}{0} \) type
 - \(\lim_{x \to a} f(x) = \pm \infty = \pm \lim_{x \to a} g(x) \) for \(\frac{\infty}{\infty} \) type

(2) \(f(x), g(x) \) are differentiable around \(x = a \) (except possibly at \(x = a \))

(3) \(\lim_{x \to a} \frac{f'(x)}{g'(x)} \) exists or it is \(+\infty, -\infty \)

The same result holds when \(\lim_{x \to a} \) is replaced by

\[\lim_{x \to \infty}, \lim_{x \to -\infty}, \lim_{x \to a^+}, \lim_{x \to a^-} \]

Example 1. Evaluate

\[\lim_{x \to 0^+} x \log x \]

Write this as

\[\lim_{x \to 0^+} \frac{\log x}{1/x} \]

This is an indeterminate of the form \(\frac{\infty}{\infty} \). Applying L’Hôpital we get

\[\lim_{x \to 0^+} \frac{\log x}{1/x} = \lim_{x \to 0^+} \frac{1/x}{-1/x^2} = \lim_{x \to 0^+} (-x) = 0 \]

Example 2. Evaluate

\[\lim_{x \to 0^+} \frac{e^x}{x} \]

As \(x \to 0 \) we have \(e^x \to 1 > 0 \) while \(\frac{1}{x} \to +\infty \) (we have positive \(x \) here) so

\[\lim_{x \to 0^+} \frac{e^x}{x} = +\infty. \]

Warning: do not try to apply L’Hopital on this one!

Advice on taking limits

1. First, simplify as much as possible.

2. See whether it is a determinate form \((0/1, 1/0, 1/\infty, \infty/1) \) or an indeterminate form \(0/0, \infty/\infty, \infty \cdot \infty, 0 \cdot \infty, \) etc.
3. For a determinate form use usual methods (including the squeeze theorem).

4. For an indeterminate form see whether L'Hopital can be effectively applied.
 - If it seems to work effectively, it will reduce the problem to an easier one. Try that one.
 - If L'Hopital does not seem to reduce the problem to an easier one, then try other methods (including squeeze theorem).

Exercise 1. Compute
\[\lim_{x \to 1} \frac{x^{11} - 2x + 1}{x - 1} \]

Exercise 2. Evaluate
\[\lim_{x \to 0} \frac{\cos x - 1}{x^2} \]

When you apply L'Hopital many times make sure that:

- each step satisfies 0/0 or \(\infty/\infty \) indeterminate type
- at the last step the limit exists (or = \(\infty \), = \(-\infty \))

Once conditions (1) and (2) in L'Hopital's rule are satisfied, do not worry too much about condition (3) (that \(\lim_{x \to a} f'(x)/g'(x) \) exists) since failure of (3), after (1) and (2), is not usual (but there are examples where it happens, e.g. in examples involving infinitely many oscillations.)

Example 3.
\[\lim_{x \to 0^+} x^x \]

Apply logarithm. Then find
\[\lim_{x \to 0^+} x \ln x \]

We have that \(x \to 0 \) and \(\ln x \to -\infty \) as \(x \to 0^+ \), so we cannot apply limit laws. Instead we write the limit as a quotient:
\[\lim_{x \to 0^+} x \ln x = \lim_{x \to 0^+} \frac{\ln x}{x} \]

Then \(\ln x \to -\infty \) and \(\frac{1}{x} \to \infty \) as \(x \to 0^+ \) and both \(\ln x \) and \(\frac{1}{x} \) are differentiable for \(x > 0 \). Then we can apply L'Hopital and get
\[\lim_{x \to 0^+} \frac{\ln x}{x} = \lim_{x \to 0^+} \frac{\frac{1}{x}}{1} = \lim_{x \to 0^+} \frac{-x^2}{x} = \lim_{x \to 0^+} -x = 0. \]

Back to the limit we are interested in:
\[\lim_{x \to 0^+} x \ln x = \lim_{x \to 0^+} \exp(\ln(x^x)) = \exp \lim_{x \to 0^+} x \ln(x) = \exp(0) = 1. \]
The trick to solve the last example was to apply logarithm. This also helps in the following exercise.

Exercise 3. (*) Find

\[
\lim_{x \to \infty} \left(1 + \frac{1}{x} \right)^{\sqrt{x}}
\]