1 Last class

Theorem 1 (Increasing/decreasing). 1. If \(f'(x) > 0 \) on an interval then \(f \) is increasing on that interval.

2. If \(f'(x) < 0 \) on an interval then \(f \) is decreasing on that interval.

Corollary 1. If \(f'' > 0 \) on an interval then \(f' \) is increasing on that interval.

If we apply this corollary to a critical point, we get a test to determine if a function has a local minima or local maximal at a critical point.

Theorem 2 (Second derivative test). Suppose \(f'' \) is continuous near \(c \) and \(f'(c) = 0 \) then

1. if \(f''(c) > 0 \) then \(f \) has a local minimum at \(c \).

2. if \(f''(c) < 0 \) then \(f \) has a local maximum at \(c \).

Today we go beyond critical points: from the second derivative we will get information about the shape of the graph.

2 Concavity

Example 1. Let \(f(x) = x^3 \).

Look a the tangent lines to the graph of \(x^3 \). The tangent lines are

- above the graph for \(x < 0 \)
- below the graph for \(x > 0 \)
Definition 1 (Concavity).
1. If \(f \) lies above all its tangents on an interval \(I \) it is concave upward (concave up / CU) on \(I \).
2. If \(f \) lies below all its tangents on an interval \(I \) it is concave downward (concave down / DU) on \(I \).

Look again to the tangent lines to the graph of \(x^3 \). The tangent lines are

- decreasing for \(x < 0 \). It means that the second derivative should be negative (if it exists).
- increasing for \(x > 0 \). The second derivative should be positive (if it exists).

Theorem 3.
- If \(f'' > 0 \) then \(f' \) is increasing and hence \(f \) is concave up.
- If \(f'' < 0 \) then \(f' \) is decreasing and hence \(f \) is concave down

Definition 2. If \(f''(c) = 0 \) and the concavity of \(f \) changes across \(x = c \), then we call \((c, f(c))\) an inflection point.

Example 2. In our running example \(f(x) = x^3 \), \(x = 0 \) is an inflection point.

Example 3 (A zero is not necessarily an inflection point). Consider \(f(x) = x^4 \).

Example 4 (Concavity may change where the second derivative doesn’t exist). Consider \(f(x) = x^{1/3} \). Concavity changes at \(x = 0 \), but according to our definition this is not an inflection point.

Exercise 1. Let \(f(x) = \frac{\log(x)}{\sqrt{x}} \). The second derivative of \(f(x) \) is

\[
f''(x) = \frac{3\log(x) - 8}{4x^{5/2}}
\]

Determine the intervals on which \(f \) is concave up and the intervals on which \(f \) is concave down. Find the coordinates of any inflection points if they exist.

Answer. First we note that the domain of definition of \(f \) is the set of positive numbers \(x > 0 \). Moreover the second exists and is continuous for all \((0, \infty)\), therefore the only change in concavity could happen at \(x = 0 \) such that \(f''(x) = 0 \). Since \(4x^{5/2} > 0 \) for all \(x > 0 \), to solve \(f''(x) = 0 \) it is enough to solve

\[
3\log(x) - 8 = 0
\]

The solution to the equation above is \(x = e^{8/3} \). This means that \(f''(e^{8/3}) \). Now, we need to check the sign of \(f''(x) \) before \(x = e^{8/3} \) and after \(x = e^{8/3} \):
• If \(0 < x < e^{8/3}\) then \(3 \log(x) - 8 < 0\). Recall that \(4x^{5/2} > 0\) for all \(x > 0\), so we get \(f'(x) < 0\).

• If \(x > e^{8/3}\) then \(3 \log(x) - 8 > 0\). We use again that \(4x^{5/2} > 0\) for all \(x > 0\), so we get \(f'(x) > 0\).

The sign chart looks as follows:

<table>
<thead>
<tr>
<th>(x)</th>
<th>((0, e^{8/3}))</th>
<th>((e^{8/3}, \infty))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(f'')</td>
<td>-</td>
<td>+</td>
</tr>
</tbody>
</table>

| concavity | concave down | concave up |

In conclusion:

• The graph of \(f\) is concave down on \((0, e^{8/3})\) and concave up on \((e^{8/3}, \infty)\).

• The point \((e^{8/3}, f(e^{8/3}))\) is an inflection point.