1 Today’s topics

1. More on remainders
2. Optimization: Maximum and minimum values

2 Remainders

Let $R_1(x) = f(x) - T_1(x)$ be the remainder. Then there is c between a and x such that

$$R_1(x) = \frac{f''(c)}{2!}(x - a)^2$$

Example 1. Estimate the error in the linear approximation to $(4.1)^{3/2}$.

First, we need to choose our function $f(x)$ and a, around which we make our approximation. Set

$$f(x) = x^{3/2}, \quad a = 4$$

To apply the Lagrange Remainder formula we need the second derivative of $f(x)$. We have the following:

$$f'(x) = \frac{3}{2}x^{1/2}, \quad f''(x) = \frac{3}{4}x^{-1/2}$$

Then

$$R_1(x) = \frac{f''(c)}{2!}(x - a)^2 = \frac{3}{4}c^{-1/2}(0.1)^2, \quad \text{for some } 4 < c < 4.1$$

3 Taylor series

We look for transcendental functions like e^x, $\sin x$ or $\cos x$. Precisely, because the definition of a transcendental function is one that cannot be written exactly as a polynomial.

The main idea is that a bigger n gives a better expansion, so that the remainder gets smaller and smaller. Equivalently

$$\lim_{n \to \infty} R_n(x) = 0$$

and so

$$\lim_{n \to \infty} T_n(x) = f(x)$$
If $R_n(x) \to 0$, then we can write f as an infinite sum
\[
 f(x) = f(a) + f'(a)(x-a) + \frac{1}{2!}f''(a)(x-a)^2 + \ldots \\
= \sum_{k=0}^{\infty} \frac{1}{k!}f^{(k)}(a)(x-a)^k
\]
This is called the Taylor series of f at a. More of this in a later course.

4 Optimisation: maximum and minimum values

4.1 Global extreme values

Definition 1. Let f be a function with domain D.

- f has an **global (absolute) maximum** value on D at a point c if
 \[f(x) \leq f(c) \quad \text{for all } x \in D \]
- f has an **global (absolute) minimum** value on D at c if
 \[f(x) \geq f(c) \quad \text{for all } x \in D \]

The global maximum and global minimum of f are called **extreme values**.

Examples

1. Consider $y = x^2$ on the following domains
 - (a) $D = (-\infty, \infty)$: no absolute maximum, absolute minimum at $x = 0$
 - (b) $D = [-2, 2]$, absolute maximum at $x = 2$, absolute minimum at $x = 0$
 - (c) $D = (0, 2]$, absolute maximum at $x = 2$, no absolute minimum
 - (d) $D = (0, 2)$, no absolute extrema

2. Now, consider a non-continuous function
 \[
 f(x) = \begin{cases}
 \frac{1}{2} & \text{if } x = 0 \\
 \frac{1}{2} & \text{if } x = 1 \\
 x & \text{otherwise}
 \end{cases}
 \]
 in the interval $[0, 1]$. No absolute extrema: you can always have x_1 such that $f(x_1)$ is very close to 0 -but never 0- and x_2 such that $f(x_2)$ is very close to 1 -but is never 1-.
Question: under which condition can we guarantee that we always have a global maximum or global minimum? **Hint:** Think on what went wrong for f and D without absolute extrema.

Theorem 1 (Extreme value theorem). If f is continuous on the closed interval $[a, b]$ then f has a global maximum value $f(c)$ and a global minimum value $f(d)$ for some $c, d \in [a, b]$.