1 Today’s topics

1. Approximation
2. Taylor polynomials

2 Goal

Consider a polynomial function like
\[p(x) = x^3 + 9x^2 - 3x + 2 \]
A polynomial is easy to evaluate at any point: we only need arithmetic (\(+\), \(-\), \(\times\),).

Another kind of function, like \(\sin x\) or \(\ln x\) is more difficult to evaluate (or to understand how a calculator evaluates them).

Question. Is it possible to approximate a given function by a polynomial?

We want to approximate a function with a more simple one. We will go successive stages. We will approximate the value of a function with

1. a constant
2. a linear approximation
3. a quadratic function
4. a general polynomial

3 Constant approximation

Approximate with a constant function (a polynomial of degree 0). We approximate \(f(x)\) near \(x = a\) by the function \(T(x) = \text{constant}\).

How to make it good? We will choose the constant so that the original function and our approximation agree at \(x = a\).

Example 1. We want to estimate \(\sin(0.2)\). We approximate by \(a = 0\) and say
\[\sin(0.2) \approx \sin(0) = 0 \]
Figure 1: Graph of $f(x) = x^{3/2}$.

Question. Why is this bad? The function $\sin(x)$ is increasing, then $\sin(0.2) > \sin(0)$.

Characteristics of a good approximation

- accurate
- possible to calculate (add, subtract, multiply, divide integers)

Key observation. The tangent line indicates that the function is increasing. Moreover, the tangent line shows if the function is dramatically increasing or just a little bit increasing i.e. how much is the difference between $(9.1)^{3/2}$ and $9^{3/2}$

We can get a better approximation using a tangent line.

4 Linear approximation

If a constant approximation is the “zeroth approximation” that is an approximation of “zeroth order”. Following the same pattern, a linear approximation is an approximation of *first order* because we approximate with a polynomial of degree 1.

The *linearization* of f at $x = a$ is the tangent line

$$L(x) = f(a) + f'(a) \cdot (x - a)$$
Notice that
\[L(a) = f(a) \quad L'(a) = f'(a) \]
Indeed, \(L(x) \) is the unique first degree polynomial that satisfies these two conditions.

Example 2. We want to estimate \(\sin(0.2) \).

The zeroth order approximation is \(\sin(0) = 0 \). The answer will be close to this, but we need to make a correction. Let
\[f(x) = \sin(x) \]
and let’s find its linear approximation at \(x = 0 \).
\[f(x) = \sin(x) \quad f'(x) = \cos(x) \]
Then
\[f(x) \approx f(a) + f'(a) \cdot (x - a) \]
Correction of first order

Now, we approximate around 9 to estimate 9.1
\[f(0 + 0.2) \approx 0 + 1 \cdot (0.2 - 0) \]
\[= 0.2 \]

We we can make correction of higher order!

A computer gives
\[\sin(0.2) = 0.19866933079... \]

Key points To find a linear approximation of \(f(x) \) at a particular point \(x \):

- pick a point \(a \) near to \(x \)
- \(f(a) \) and \(f'(a) \) are easy to calculate
- approximate
\[f(x) \approx L(x) = f(a) + f'(a)(x - a) \]

[Worksheet]

Exercise 1. Determine what \(f(x) \) and \(a \) should be so that you can approximate the following:

(a) \(\ln(0.9) \)
(b) \(e^{-1/30} \)
(c) \(\sqrt[3]{30} \)
(d) \((2.01)^6 \)
Exercise 2. We want to estimate \((9.1)^{3/2}\).

The zeroth order approximation is \(9^{3/2} = 27\). The answer will be close to this, but we need to make a correction. Let
\[
f(x) = x^{3/2}
\]
and let’s find its linear approximation at \(x = 9\).
\[
f(x) = x^{3/2} \quad f'(x) = \frac{3}{2} x^{1/2}
\]
Then
\[
f(x) \approx f(a) + f'(a) \cdot (x - a)
\]
Correction of first order

Now, we approximate around 9 to estimate 9.1
\[
f(9 + 0.1) \approx 9^{3/2} + \frac{3}{2} 9^{1/2} \cdot (9.1 - 9)
\]
\[
= 27 + \frac{3}{2} 9^{1/2} \cdot (9.1 - 9)
\]
\[
= 27 + \frac{9}{20}
\]
\[
= 27 + 0.45
\]
\[
= 27.45
\]

We can make correction of higher order! That is what the computer does. It gives
\[
(9.1)^{3/2} = 27.45124770...
\]

Exercise 3. Use a linear approximation to estimate \(e^x\) near \(x = 0\)

5 Quadratic approximation

Example 3. Estimate \(\sin \left(\frac{\pi}{2} + 0.1 \right)\)

Our first attempt is a linear approximation. We have
\[
\sin \left(\frac{\pi}{2} \right) = 1 \quad \sin' \left(\frac{\pi}{2} \right) = \cos \left(\frac{\pi}{2} \right) = 0.
\]
Then, the linear approximation around \(\pi/2\) is just the constant approximation
\[
L(x) = \sin(\pi/2) = 1.
\]
The situation would be better if we can approximate with a parabola (a polynomial of second order)

Let us examine the general situation. We chose the constant approximation \(T(x)\) by requiring
\[
T(a) = f(a).
\]
We improved with a linear approximation by requiring
\[
\begin{align*}
T(a) &= f(a) \\
T'(a) &= f'(a)
\end{align*}
\]
Next, we can make a quadratic approximation by requiring
\[
\begin{align*}
T(a) &= f(a) \\
T'(a) &= f'(a) \\
T''(a) &= f''(a)
\end{align*}
\] (1)
and the quadratic approximation is:
\[
T(x) = c_0 + c_1(x - a) + c_2(x - a)^2,
\]
We have
\[
\begin{align*}
T'(x) &= c_1 + 2c_2(x - a) \\
T''(x) &= 2c_2
\end{align*}
\] ⇒ \[
\begin{align*}
T'(a) &= c_1 \\
T''(a) &= 2c_2
\end{align*}
\]
To satisfy the requirements in (1) we need
\[
\begin{align*}
c_0 &= f(a) \\
c_1 &= f'(a) \\
c_2 &= f''(a)/2
\end{align*}
\]
Therefore
The quadratic approximation (or the second degree Taylor polynomial for \(f \) about \(x = a \)) is
\[
T_2(x) = f(a) + f'(a)(x - a) + \frac{f''(a)}{2}(x - a)^2
\]
To finish the example above, the quadratic approximation to \(\sin(x) \) around \(\frac{\pi}{2} \) is

\[
T_2(x) = 1 - \frac{1}{2} \left(x - \frac{\pi}{2}\right)^2
\]

Therefore

\[
\sin \left(\frac{\pi}{2} + 0.1\right) \approx 1 - \frac{1}{2}(0.1)^2
\]

Example 4. Approximate \(f(x) = e^x \) close to \(x = 0 \).

We need to know \(f(0), f'(0) \) and \(f''(0) \):

\[
f(x) = e^x \quad f(0) = e^0 = 1
\]

\[
\left\{ \begin{array}{l}
 f(x) = e^x \\
 f'(x) = e^x \\
 f''(x) = e^x
\end{array} \right. \quad \Rightarrow \quad \left\{ \begin{array}{l}
 f(0) = e^0 = 1 \\
 f'(0) = 1 \\
 f''(0) = 1
\end{array} \right.
\]

Substituting these into the equation gives the second degree Taylor polynomial for \(e^x \) about \(x = 0 \):

\[
T_2(x) = 1 + x + \frac{1}{2}x^2
\]

A Taylor approximation about \(x = 0 \) has a special name: “Maclaurin polynomials”.

6 Taylor polynomials

We can do a higher degree Maclauring polynomial for \(e^x \) very easily. Again, we need a requirement:

\[
T_n^{(m)}(0) = f^{(m)}(0)
\]

Then

\[
\left\{ \begin{array}{l}
 T_n(x) = c_0 + c_1x + c_2x^2 + \cdots + c_nx^n \\
 T_n'(x) = c_1 + 2c_2x + 3c_3x^2 + \cdots + nc_nx^{n-1} \\
 T_n''(x) = 2c_2 + 3 \cdot 2c_3x + \cdots + n(n-1)c_nx^{n-2} \\
 T_n^{(3)}(x) = 3 \cdot 2c_3 + \cdots + n(n-1)(n-2)c_nx^{n-3}
\end{array} \right. \\
\Rightarrow \left\{ \begin{array}{l}
 T_n(0) = c_0 \\
 T_n'(0) = c_1 \\
 T_n''(0) = 2c_2 \\
 T_n^{(3)}(0) = 3 \cdot 2c_3
\end{array} \right.
\]

Recall that \(\exp^{(m)}(0) = 1 \). Then

\[
c_0 = 1, \quad c_1 = 1, \quad c_2 = \frac{1}{2}, \quad c_3 = \frac{1}{2 \cdot 3}, \quad c_4 = \frac{1}{2 \cdot 3 \cdot 4}, \quad \ldots, \quad c_n = \frac{1}{n \cdot (n-1) \ldots \cdot 2 \cdot 1} = \frac{1}{n!}
\]
Therefore, the \textit{\textit{\textit{\textit{\textit{n}-th degree Taylor polynomial of } e^x \text{ about } x = 0}} is}

\[T_n(x) = 1 + x + \frac{x^2}{2} + \frac{x^3}{3!} + \ldots + \frac{x^n}{n!} \]

Let \(a \) be a constant and let \(n \) be a non-negative integer. The \(n \)-th degree Taylor polynomial for \(f(x) \) about \(x = a \) is

\[T_n(x) = f(a) + f'(a) + \frac{1}{2}f''(a)(x - a)^2 + \ldots + \frac{1}{n!}f^{(n)}(x - a)^n \]

\[= \sum_{k=0}^{n} \frac{1}{k!}f^{(k)}(x - a)^k \]