1 Review of inverse functions

What is a function? Usually we consider $f : \mathbb{R} \rightarrow \mathbb{R}$.

(a) $F : \text{“People”} \rightarrow \text{“numbers with 8 digits”}$. A function between people and student numbers

(b) $G : \text{“student numbers in Math 100”} \rightarrow \text{“Section”}$. A function between student numbers registered in Math 100 and their section

input $x \rightarrow f$ does “stuff” to $x \rightarrow$ return unique output y

We are interested in the inverse operation

take output $y \rightarrow$ do “stuff” to $y \rightarrow$ return original x

For which of our examples above can we defined the inverse?

(a) F is invertible
(b) G is non-invertible

Smart observation In order for a function to be invertible different x values cannot map to the same y value

Definition 1 (One-to-one). A function f is one-to-one (injective) when

\[
\text{if } x_1 \neq x_2 \text{ then } f(x_1) \neq f(x_2)
\]

(Equivalently, the contrapositive states: $f(x_1) = f(x_2) \Rightarrow x_1 = x_2$) That is, when it never takes the same y value more than once.

Example 1 (One-to-one real function). $f(x) = 3x$
Question: is it injective?

Yes. Let’s prove it. If \(f(x) = f(y) \) then \(3x = 3y \). Dividing by 3 we get \(x = y \). Therefore \(f \) satisfies the definition and it is one-to-one.

In the case of a function \(f : \mathbb{R} \to \mathbb{R} \) we have a geometric test

[Graph \(f(x) = 3x \)]

Definition 2 (Horizontal line test). A function is one-to-one if and only if no horizontal line \(y = c \) intersects the graph \(y = f(x) \) more than once.

Example 2. \(\sin(x) \) is not injective. It fails the horizontal line test [Graph \(\sin(x) \)]

Definition 3 (Inverse function). Let \(f \) be a one-to-one function with domain \(A \) and range \(B \). Then its inverse function is denoted \(f^{-1} \) and has domain \(B \) and range \(A \). It is defined by

\[
 f^{-1}(y) = x \quad \text{whenever} \quad f(x) = y
\]

for any \(y \in B \).

Warning: \(f^{-1}(x) \neq \frac{1}{f(x)} \)

Example 3. The inverse function of \(f(x) = \frac{1}{3}x \)

Step 0 Check \(f \) is one-to-one in its domain

Step 1 Solve for \(x \)

Step 2 Interchange \(x \) and \(y \)

Step 3 Domain \(f^{-1} = \text{Range } f \)

The graphs of \(y = f(x) \) and \(y = f^{-1} \) are symmetric with respect to the identity line \(y = x \)

This is simply because for the inverse function the roles of \(x \) and \(y \) as input and output are interchanged.

1.1 Worksheet

Exercise 1. Find the function inverse to \(y = x^7 + 3 \)
Answer. To find the inverse we need to: 1. solve for y and 2. exchange y and x.

Step 1: solve for y We have

$$x = (y - 3)^{1/7}$$

Step 2: exchange y and x We get

$$y = (x - 3)^{1/7}$$

and this is the inverse function.

We didn’t check if the function is actually one-to-one. This is very easy with the following fact:

Composition of one-to-one functions gives a one-to-one function

If $f(x) = x^7$ and $g(x) = x + 3$ then $h(x) = x^7 + 3$ is the composition

$$h(x) = g \circ f = g(f(x))$$

Both f and g are one-to-one, therefore the composition h is one-to-one too. From the point of view of composition of functions, we have a second way to get the inverse. The inverse of f is

$$f^{-1}(x) = x^{1/7}$$

and the inverse of g is

$$g^{-1}(x) = x - 3$$

Then the inverse of $h(x) = g(f(x))$ is

$$h^{-1} = f^{-1}(g^{-1}(x)) = f^{-1}(x - 3) = (x - 3)^{1/7}$$

(2)

This is the same than [1]. First we need to undone g (because it is the last function we apply for h), and then we undo whatever f did.

A way to check if (2) is right answer is with the following observation:

$$h^{-1}h(x) = h(h^{-1}(x)) = x.$$

Let us check our answer above. We have:

$$h(h^{-1}(x)) = h((x - 3)^{1/7}) = [(x - 3)^{1/7}]^{7} - 3 = x - 3 + 3 = x; a$$

and

$$h^{-1}(h(x)) = h^{-1}(x^7 + 3) = ([x^7 + 3] - 3)^{1/7} = (x^7)^{1/7} = x.$$

Theorem 1. Suppose f and g are one-to-one. Then $f \circ g(x) = f(g(x))$ is one-to-one

Exercise 2. Let $f(x) = \sqrt{x - 1}$
(a) Find the domain of \(f \)
(b) Show that \(f \) is one-to-one
(c) Find \(f^{-1} \) (in the form \(x = g(y) \))
(d) Find \(\frac{dy}{dx}, \frac{dx}{dy} \) and calculate their product

Answer. (a) The domain of \(f \) is \(\{x \in \mathbb{R} | x \geq 1 \} \)

(b) To show one-to-one property, we check

\[
 f(x_1) = f(x_2) \Rightarrow x_1 = x_2
\]

Suppose

\[
 \sqrt{x_1 - 1} = \sqrt{x_2 - 1}.
\]

The square root is an invertible function in its domain of definition, then \(x_1 - 1 = x_2 - 1 \) and therefore \(x_1 = x_2 \). This proves \(f(x) = \sqrt{x - 1} \) is invertible.

Alternative We discussed an alternative way to prove that the function is invertible. The key observation is that \(\sqrt{x^2 - 1} \) is increasing. A complete justification needs tools from following weeks, but it is a nice way to approach the problem. The derivative of \(f(x) = \sqrt{x - 1} \) is

\[
 \frac{d}{dx} f(x) = \frac{1}{2\sqrt{x-1}} > 0
\]

Since the derivatives is positive in all the domain, then \(f \) is increasing. Now, take \(x \) and \(y \) with \(x \neq y \).

Without loss of generality

\[
 x < y
\]

(someone should be the smaller, we call it \(x \)). Since the function is increasing, it follows that

\[
 f(x) < f(y)
\]

In particular

\[
 f(x) \neq f(y).
\]

Therefore \(f \) is a one-to-one function, since it satisfies the definition.

(c) **Step 1: a quick calculation** Write

\[
 y = \sqrt{x - 1}
\]

When \(x \geq 1 \), there is a unique \(y \) such that

\[
 y^2 = x - 1
\]

thus

\[
 x = y^2 + 1
\]

Step 2: identify the domain of \(f^{-1} \) Note:

Domain of \(f^{-1} = \) range of \(f(x) = \sqrt{x - 1} \)
Note $\sqrt{x-1} \geq 0$ Then:

- the range of f is $\{y \mid y \geq 0\}$
- the domain of f^{-1} is $\{y \mid y \geq 0\}$

Finally, the complete answer is

$$f^{-1}(y) = y^2 + 1, \quad \text{for } y \geq 0$$

Step 3: check the answer Let’s check $f(f^{-1}(y))$. We have:

$$f(f^{-1}(y)) = f(y^2 + 1) = \sqrt{y^2 + 1} - 1 = \sqrt{y^2} = |y|$$

Since the domain of f^{-1} are the non-negative numbers, we have $|y| = y$ and hence

$$f(f^{-1}(y)) = y.$$

Exercise 3. Does $y = x^2$ have an inverse?

Answer. No. Graphically, it fails the horizontal line test. It is easy to see that it fails the definition: Consider 1 and -1. We have that $1 \neq -1$ but $1^2 = (-1)^2 = 1$.

2 Logarithms

Example 4. Consider the exponential function

$$y = e^x$$

The function is

- Domain: \mathbb{R} (equivalently $-\infty < x < \infty$)
- Range: $y > 0$
- Injective (equivalently, one-to-one)

Its inverse is

$$y = \ln x$$

The logarithm is

- Domain $x > 0$
- Range: $-\infty < y < \infty$

Graph: $y = e^x$ and $y = \ln x$ are symmetric about $y = x$.

Inverse exponential function

\[1\] For this exercise, we denote the input for f^{-1} by y. Recall that usually we denote the input by x.

5
Definition 4. The logarithm with base q is defined by

$$y = \log_q(x) \iff x = q^y$$

Properties of logarithms

Theorem 2 (Logarithm rules). Let A and B positive numbers and let n be any real number.

1. $\ln(A \cdot B) = \ln(A) + \ln(B)$
2. $\ln(A/B) = \ln A - \ln B$
3. $\ln(A^n) = n \ln(A)$

Proof.

(a) We want: $\ln(A \cdot B) = \ln(A) + \ln(B)$ Write

$$\ln(A \cdot B) = \ln(e^{\ln A} e^{\ln B})$$

We apply laws for exponents

$$\ln(e^{\ln A} e^{\ln B}) = \ln(e^{\ln A + \ln B}) = \ln(A) + \ln(B)$$

(b) Want: $\ln(A/B) = \ln A - \ln B$ Write in terms of the exponential and apply exponent laws:

$$\ln(A/B) = \ln\left(\frac{e^{\ln A}}{e^{\ln B}}\right) = \ln\left(e^{\ln A - \ln B}\right) = \ln A - \ln B$$

(c) Want: $\ln(A^n) = n \ln(A)$ Same strategy than above: write in terms of the exponential and apply exponent laws.

$$\ln(A^n) = \ln((e^{\ln A})^n) = \ln(e^{n \ln A}) = n \ln A.$$

The last property today is the change of base

We have

$$b^{\log_b(a)} = a$$

Now we want to write this in terms of the natural logarithm. Apply \ln:
\[\ln(b^\log_b(a)) = \ln(a) \]

By the logarithm laws, we can take the exponent out as a multiplication Then

\[\log_b(a) \ln(b) = \ln(a) \]

Therefore

Change of base - to natural base:

\[\log_b(a) = \frac{\ln a}{\ln b} \]

In general:

For positive \(a, b \) and \(c \):

\[\log_b(a) = \frac{\log_c(a)}{\log_c(b)} \]

2.1 Worksheet

Exercise 4.

1. \(\log(e^{10}) = \)

2. \(\log(2^{100}) = \) (in terms of \(\log 2 \))

Exercise 5. Simplify into a single logarithm:

\[f(x) = \ln \left(\frac{10}{x^2} \right) + 2 \ln x + \ln(10 + x) \]

Exercise 6. A variant on Moore’s law states that computing power doubles every 18 months. Suppose computer today can do \(N_0 \) operations per second.

(a) Write a formula for the future power of computers:

Answer. Computers \(t \) years from now will be able to do \(N(t) \) operations per second where

\[N(t) = 2^{t/1.5}N_0 \]

(b) A computing task would take 10 years for today’s computers. Suppose we wait 3 years and then start the computation. When will we have the answer?

Answer. In 3 years,

\[N(3) = 2^{3/1.5}N_0 = 2^2N_0 = 4N_0. \]

Then computers will be 4 times more powerful. If the task takes 10 years to complete if we do it today, in 3 years it would take
\[\frac{10}{4} = 2.5 \text{ years} \]

(c) At what time will computers be powerful enough to compute the task in 6 months?

Answer. If computer can complete a task in 6 months, it needs to be \(x \) times more powerful, where

\[\frac{10}{x} = \frac{1}{2} \quad \Rightarrow \quad x = 20 \]

Then, we need computers 20 times more powerful than today. We want to find \(t \) such that

\[N(t) = 20N_0 \quad \Rightarrow \quad 2^{t/1.5} = 20. \]

We can solve applying the logarithm base 2 (inverse function of \(2^x \)). We get

\[\frac{t}{1.5} = \log_2(20) \quad \Rightarrow \quad t = (1.5)\log_2(20) = \left(\frac{3}{2}\right)\log_2(20). \]

Simplifying with the logarithmic laws:

\[t = \log_2(20^{\frac{3}{2}}) \approx 6.48289 \text{ years} \]