Motivation and the limit of a function

This lecture is based on our textbook CLP-I, sections 1.2 and 1.3.

Definitions covered in class

1. Limit of a function
2. Left- and right- handed limits

1 Motivation

The following are some real-life phenomena:

- Movement
 - Consider an object falling from the top of the tower of Pisa.
 - We relate time and distance by a function
 \[s : \mathbb{R} \to \mathbb{R} \]
 \[t \mapsto d \]
- Population growth
 - Similarly, time and population size are related by a function.

Question. Can you think of other (physical, biological, sociological...) phenomena where two quantities are related by a function?

About differential calculus:

- *Object of Study:* functions
- *Main Question:* how does a function change?
- *Main Idea:* approximation.

Example 1 (Velocity problem). Back to a hammer falling from the tower of Pisa.
- Time \(t \) (unit = seconds)
- \(s(t) \) is the distance from the top / the hammer has fallen (unit = meters)
- Model
 \[
 s(t) = \frac{9.8}{2} t^2 = 4.9t^2.
 \]

Question. How fast is the hammer falling after 1 second?

More precisely, what is the (instantaneous) velocity at \(t = 1 \)?

Note. This is an example of the Main Question. Let’s use the Main Idea: approximation!

We begin with average velocity.

\[
v_a(1.1) = \text{“average velocity between 1 and 1.1”}
= \frac{\text{change in position}}{\text{change in time}}
= \frac{s(1.1) - s(1)}{1.1 - 1}
= \frac{4.9(1.1)^2 - 4.9}{0.1}
= \frac{4.9 \times 0.21}{0.1}
= 10.29 \text{m/s}
\]

Now, let’s look how \(v_a(x) \) changes when \(x \) is closer and closer to 1:

\[
\begin{align*}
v_a(1.1) &= 10.29 \\
v_a(1.01) &= 9.849 \\
v_a(1.001) &= 9.8049 \\
v_a(1.0001) &= 9.80049
\end{align*}
\]

Question. What should be the instantaneous velocity?

We get closer to 9.8. Therefore, the instantaneous velocity is

\[
v(1) = 9.8 \text{m/s}
\]

On Example 1, we arrived to the solution with an approximation:

\[
v(1) = \lim_{h \to 0} v_a(h) = \lim_{h \to 0} \frac{s(1 + h) - s(h)}{h},
\]

\(^{1}\text{Thank you, Galileo!} \)
2 The limit of a function

2.1 Definition and first examples

Let \(f : \mathbb{R} \to \mathbb{R} \) be a function.

Definition 1. We will often write

\[
\lim_{x \to a} f(x) = L ; \text{ or } \quad f(x) \to L \text{ as } x \to a
\]

which means the “limit of \(f(x) \) as \(x \) approaches \(a \) is \(L \).”

Definition 2 (Limit of a function). We write

\[
\lim_{x \to a} f(x) = L
\]

if the value of the function \(f(x) \) is sure to be arbitrarily close to \(L \) whenever the value of \(x \) is close enough to \(a \) without being exactly \(a \).

Question (Example 0). If \(f(x) = x - 2 \), what is \(\lim_{x \to 2} f(x) = ? \).

Graph: (take a pencil)

Of course, the answer is \(\lim_{x \to 2} f(x) = 0 \).

Example 2 (A simple limit).

\[
f(x) = \begin{cases}
2x & x < 3 \\
17 & x = 3 \\
2x & x > 3
\end{cases} \tag{2}
\]
We have

\[f(3) = 17 \quad \lim_{x \to 3} f(x) = ? \]

Question. What is \(\lim_{x \to 3} f(x) \)?

<table>
<thead>
<tr>
<th>x</th>
<th>f(x)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.9</td>
<td>5.8</td>
</tr>
<tr>
<td>2.99</td>
<td>5.98</td>
</tr>
<tr>
<td>2.999</td>
<td>5.998</td>
</tr>
<tr>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>3.1</td>
<td>6.2</td>
</tr>
<tr>
<td>3.01</td>
<td>6.02</td>
</tr>
<tr>
<td>3.001</td>
<td>6.002</td>
</tr>
</tbody>
</table>

We conclude

\[\lim_{x \to 3} f(x) = 6. \]

Example 3. Consider

\[f(x) = \frac{x - 2}{x^2 + x - 6}. \]

Determine

\[\lim_{x \to 2} f(x) \]

Question. What should we do?

First try. Evaluation gives \(\frac{0}{0} \).

This expression is NOT DEFINED\(^2\) and cannot be an answer.

Second try. Let’s use some algebra. We have the following factorization:

\[\frac{x - 2}{x^2 + x - 6} = \frac{x - 2}{(x - 2)(x + 3)} = \frac{1}{x + 3}. \]

\(^2\)In this case, not defined means that there is no sensible way to make sense of this expression. It’s not 1, neither 0, and definitely not \(\infty \).
Then
\[
\lim_{x \to 2} \frac{x - 2}{x^2 + x - 6} = \lim_{x \to 2} \frac{1}{x - 2 + 3}
\]
This last limit is easy to determine, as in Example 0:
\[
\lim_{x \to 2} \frac{1}{x + 3} = \frac{1}{5}
\]
The conclusion is
\[
\lim_{x \to 2} \frac{x - 2}{x^2 + x - 6} = \frac{1}{5}.
\] (3)

2.2 One sided limits

Example 4. Consider the function

\[
f(x) = \begin{cases}
 x & x < 2 \\
 -1 & x = 2 \\
 x + 3 & x + 3x > 2
\end{cases}
\]

Graph:(take a pencil)

Let us plug in numbers close to 2

<table>
<thead>
<tr>
<th>x</th>
<th>f(x)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.9</td>
<td>1.9</td>
</tr>
<tr>
<td>1.99</td>
<td>1.99</td>
</tr>
<tr>
<td>1.999</td>
<td>1.999</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>2.1</td>
<td>5.1</td>
</tr>
<tr>
<td>2.01</td>
<td>5.01</td>
</tr>
<tr>
<td>2.001</td>
<td>5.001</td>
</tr>
</tbody>
</table>

In this case
\[
\lim_{x \to 2} f(x) \text{ does not exist}
\]
However, we can talk about “one-sided limits”

Definition 3 (One-sided limits. Definition 1.3.7 in CLP). We write

$$\lim_{x \to a^-} f(x) = K$$

when the value of $f(x)$ gets closer and closer to K when $x < a$ and x moves closer and closer to a. Since the x-values are always less than a, we say that x approaches a from below. This is also often called the *left-hand limit* since the x-values lie to the left of a on a sketch of the graph. We similarly write

$$\lim_{x \to a^+} f(x) = K$$

when the value of $f(x)$ gets closer and closer to L when $x > a$ and x moves closer and closer to a. For similar reasons we say that x approaches a from above, and sometimes refer to this as the *right-hand limit*.

Note. The following are other notations.

$$\lim_{x \to a^+} f(x) = \lim_{x \downarrow a} f(x) = \lim_{x \nearrow a} f(x) = L \quad \text{right-hand limit}$$

$$\lim_{x \to a^-} f(x) = \lim_{x \uparrow a} f(x) = \lim_{x \searrow a} f(x) = L \quad \text{right-hand limit}$$

In Example 4, we have

$$\lim_{x \to 2^-} f(x) = 2 \quad \text{and} \quad \lim_{x \to 2^+} f(x) = 5$$

Theorem 1 (Theorem 1.3.8 in CLP-1). We have that

$$\lim_{x \to a} f(x) = L \quad \text{if and only if} \quad \lim_{x \to a^-} f(x) = L \quad \text{and} \quad \lim_{x \to a^+} f(x) = L$$

2.3 When the limit does not exist

Example 5 (A bad example). Consider the function

$$f(x) = \sin \left(\frac{\pi}{x} \right)$$

Observe that

$$\lim_{x \to 0} f(x) \text{ DNE (does not exist)}$$

This is clear when we draw the graph, since any real number L does not meet all the requirements from Definition 2.
Graph:

(take a pencil. Hint: How does the graph of $sin(y)$ look like?)