Homework 8

1. Chapter 8: Question 12
2. Chapter 8: Question 18
3. Chapter 8: Question 20
4. If \(a \in \mathbb{Z} \) is odd, then prove that the set \(S = \{a + m : m \text{ is even}\} \) is the set of all odd numbers.
5. Prove or disprove the statement:

 "\(A - (B - C) = (A - B) - C. \)"

6. Prove or disprove the statement:

 "There exists \(c \in \mathbb{R} \) such that the equation \(2^x = c \) has two solutions."

7. Prove or disprove the statement:

 "There exists \(x \in \mathbb{R} \) such that the number \(f(x) = x^2 + 5x + 4 \) is prime."

8. For any \(x \in \mathbb{R} \), consider the number \(\lfloor x \rfloor \), which is defined to be the greatest integer \(n \) such that \(n \leq x \). For example, \(\lfloor 1 \rfloor = 1 \), whereas \(\lfloor 2.7 \rfloor = 2 \). Given the definition, prove or disprove the statement:

 "For all \(x, y \in \mathbb{R} \), \(\lfloor x + y \rfloor \leq \lfloor x \rfloor + \lfloor y \rfloor. \)"

9. Let \(a, b \in \mathbb{Z} \) and \(n \in \mathbb{N} \). We say that \(b \) is a multiplicative inverse of \(a \) modulo \(n \) if \(ab \equiv 1 \) (mod \(n \)).

 If we have two numbers \(a, b \in \mathbb{Z} \), we say that \(n \in \mathbb{Z} \) is a multiplicative inverse of \(a \) modulo \(b \) if \(a \cdot n \equiv 1 \) (mod \(b \)).

 Given the definition, prove or disprove the statements:

 • Every integer has a multiplicative inverse modulo 17.
 • Every integer has a multiplicative inverse modulo 18.

 (Hint: Proposition 7.1 and the following proposition in Chapter 7.3 would be useful.)