Linear Approximations

- A real valued function $f(x)$ of a real variable x is differentiable at x_0 if there is a real number a such that
 \[f(x_0 + h) = f(x_0) + ah + E(x_0, h) \]
 (1.1)

 where
 \[\lim_{h \to 0} \frac{|E(x_0, h)|}{|h|} = 0. \]
 (1.2)

- A vector field $F : \mathbb{R}^2 \to \mathbb{R}^2$ is differentiable at z_0 if there is a 2×2 matrix A such that
 \[F(z_0 + h) = F(z_0) + Ah + E(z_0, h), \]
 (1.3)

 where
 \[\lim_{h \to 0} \frac{||E(z_0, h)||}{||h||} = 0. \]
 (1.4)

- A complex valued function $f(z)$ of a complex variable z is complex differentiable at z_0 if there is a complex number a such that
 \[f(z_0 + h) = f(z_0) + ah + E(z_0, h) \]
 (1.5)

 where
 \[\lim_{h \to 0} \frac{|E(z_0, h)|}{|h|} = 0. \]
 (1.6)

Remark 1. Equations (1.1) and (1.2) say that $f(x_0 + h)$ is approximated by the linear function $f(x_0) + ah$ up to an error term that goes to zero faster than h as $h \to 0$. To see that this is equivalent to the standard definition we can rearrange (1.1) to read
\[\frac{f(x_0 + h) - f(x_0)}{h} = a + \frac{E(x_0, h)}{h}. \]

Equation (1.2) says that the right side has a limit equal to a. So the limit of the left side must also exist and equal a. In other words, $f'(x_0)$ exists and equals a. The same argument using complex numbers applied (1.5) and (1.6) show that the a in (1.5) is the complex derivative $f'(z_0)$.

Remark 2. If \(F(z) = F \left(\begin{bmatrix} x \\ y \end{bmatrix} \right) = \begin{bmatrix} u(x, y) \\ v(x, y) \end{bmatrix} \) is differentiable at \(z_0 = \begin{bmatrix} x_0 \\ y_0 \end{bmatrix} \) then the partial derivatives of \(u \) and \(v \) exist at \(x_0, y_0 \) and \(A \) is given by the Jacobian matrix

\[
A = \begin{bmatrix}
u_x(x_0, y_0) & u_y(x_0, y_0) \\
v_x(x_0, y_0) & v_y(x_0, y_0)
\end{bmatrix}.
\]

The existence of the partial derivatives of \(u \) and \(v \) at \((x_0, y_0) \) is not sufficient to guarantee that \(F \) is differentiable. But if the partial derivatives of \(u \) and \(v \) exist for all \((x, y) \) in a small disk around \((x_0, y_0) \) and are continuous at \((x_0, y_0) \) then \(F \) is differentiable at \(z_0 = \begin{bmatrix} x_0 \\ y_0 \end{bmatrix} \) with \(A \) given by (1.7).

Remark 3. For (1.2) and (1.6) we could equally well write \(\frac{E(x_0, h)}{h} \to 0 \) and \(\frac{E(z_0, h)}{h} \to 0 \).

Complex functions as vector fields

We can identify a complex number \(z = i + iy \) with the vector \(z = \begin{bmatrix} x \\ y \end{bmatrix} \). Then \(|z| = ||z|| \).

Also, if \(a = s + it \) is another complex number then the complex product \(az = (s + it)(x + iy) = sx - ty + i(tx + sy) \) is identified with \(\begin{bmatrix} sx - ty \\ tx + sy \end{bmatrix} = \begin{bmatrix} s & -t \\ t & s \end{bmatrix} z \).

Similarly a complex function \(f(z) \) with \(f(x + iy) = u(x, y) + iv(x, y) \) can be regarded as a vector field \(F \left(\begin{bmatrix} x \\ y \end{bmatrix} \right) = \begin{bmatrix} u(x, y) \\ v(x, y) \end{bmatrix} \).

With these identifications we can rewrite the conditions for complex differentiability as follows.

- A complex function \(f(z) \) represented by \(F \left(\begin{bmatrix} x \\ y \end{bmatrix} \right) = \begin{bmatrix} u(x, y) \\ v(x, y) \end{bmatrix} \) is complex differentiable at \(z_0 = x_0 + iy_0 \) if there exists a matrix \(A \) representing complex multiplication by \(a \) such that (1.3) and (1.4) hold.

Conclusion

Complex differentiability for \(f \) is equivalent to differentiability of the corresponding \(F \) with the additional condition that the Jacobian matrix \(A \) has the form \(\begin{bmatrix} s & -t \\ t & s \end{bmatrix} \) for some \(s \) and \(t \). Since

\[
A = \begin{bmatrix} u_x(x_0, y_0) & u_y(x_0, y_0) \\ v_x(x_0, y_0) & v_y(x_0, y_0) \end{bmatrix}
\]

this is the same as saying

\[
u_x(x_0, y_0) = v_y(x_0, y_0)
\]

\[
u_y(x_0, y_0) = -v_x(x_0, y_0)
\]

These are the Cauchy Riemann equations.
Theorem 1.1 (i) If \(f = u + iv \) is complex differentiable at \(x_0 + iy_0 \) then the partial derivatives of \(u \) and \(v \) exist at \((x_0, y_0) \) and the Cauchy Riemann equations hold.

(ii) If the partial derivatives of \(u \) and \(v \) exist for all \((x, y) \) in a small disk around \((x_0, y_0) \) and are continuous at \((x_0, y_0) \) and, in addition, the Cauchy-Riemann equations hold, then \(f = u + iv \) is complex differentiable at \(x_0 + iy_0 \).

Example: \(f(z) = |z|^2 \). We have \(f(x + iy) = x^2 + y^2 \) so \(u(x, y) = x^2 + y^2 \) and \(v(x, y) = 0 \). The partial derivatives of \(u \) and \(v \) exist and are continuous everywhere. We compute \(u_x = 2x, u_y = 2y, v_x = 0 \) and \(v_y = 0 \). Thus the Cauchy-Riemann equations hold if

\[
2x = 0 \\
2y = 0
\]

i.e., if \(x = y = 0 \). We conclude that \(f(z) \) is complex differentiable at \(z = 0 \) only. Since every disk about 0 contains non-zero points, \(f \) is nowhere analytic.

Example: \(f(z) = x^3 + 3xy^2 - 3x + i(y^3 + 3x^2y - 3y) \). Here \(u(x, y) = x^3 + 3xy^2 - 3x \) and \(v(x, y) = y^3 + 3x^2y - 3y \). These are polynomials so the partial derivatives of \(u \) and \(v \) exist and are continuous everywhere. We have \(u_x = 3x^2 + 3y^2 - 3, u_y = 6xy, v_x = 6xy \) and \(v_y = 3y^2 + 3x^2 - 3 \). Thus the Cauchy-Riemann equations hold if

\[
3x^2 + 3y^2 - 3 = 3y^2 + 3x^2 - 3 \\
6xy = -6xy
\]

The first of these is always true, but the second only if \(xy = 0 \). This happens if either \(x = 0 \) or \(y = 0 \). So \(f \) is complex differentiable exactly on the real axis and the imaginary axis. Again, \(f \) is nowhere analytic.

Example: \(f(z) = e^z \). Here \(f(x + iy) = e^{x+iy} = e^x e^{iy} = e^x \cos(y) + ie^x \sin(y) \). So \(u(x, y) = e^x \cos(y) \) and \(v(x, y) = e^x \sin(y) \). Again the partial derivatives of \(u \) and \(v \) exist and are continuous everywhere. We have \(u_x = e^x \cos(y), u_y = -e^x \sin(y), v_x = e^x \sin(y) \) and \(v_y = e^x \cos(y) \). The Cauchy-Riemann equations hold if

\[
e^x \cos(y) = e^x \cos(y) \\
e^x \sin(y) = -e^x \sin(y)
\]

These hold for all \(x \) and \(y \) so \(e^z \) is complex differentiable everywhere and therefore analytic everywhere (i.e., entire).