ON A PROPERTY OF REAL PLANE CURVES OF EVEN DEGREE

ZINOVY REICHSTEIN

Abstract. F. Cukierman asked whether or not for every smooth real plane curve $X \subset \mathbb{P}^2$ of even degree $d \geq 2$ there exists a real line $L \subset \mathbb{P}^2$ such that $X \cap L$ has no real points. We show that the answer is “yes” if $d = 2$ or 4 and “no” if $n \geq 6$.

1. Introduction

F. Cukierman asked whether or not for every smooth real plane curve $X \subset \mathbb{P}^2$ there exists a real line $L \subset \mathbb{P}^2$ such that the intersections $X \cap L$ has no real points. In other words, can we “see” all real points of X in some affine space of the form $\mathbb{A}^2 = \mathbb{P}^2 \setminus L$?

Note that if d is odd, then the answer is “no” for trivial reasons: $X \cap L$ is cut out by an odd degree polynomial on L and hence, always has a real point. On the other hand, in the case where $d = 2$, the answer is readily seen to be “yes”. Indeed, given a real conic X in \mathbb{P}^2, choose a complex point $z \in X(\mathbb{C}) \setminus X(\mathbb{R})$ which is not real, and let L be the (real) line passing through z and its complex conjugate \overline{z}. If X is smooth, then L is not contained in X. Hence, the intersection $(X \cap L)(\mathbb{C}) = \{z, \overline{z}\}$ contains no real points.

The main result of this note, Theorem 1 below, asserts that the answer to Cukierman’s question is “yes” if $d = 2$ or 4 and “no” if $n \geq 6$.

Theorem 1. (a) Suppose $d = 2$ or 4. Then for every smooth plane curve $X \subset \mathbb{P}^2$ of degree d defined over the reals, there exists a real line $L \subset \mathbb{P}^2$ such that $(X \cap L)(\mathbb{R}) = \emptyset$.

(b) Suppose $d \geq 6$ is an even integer. Then there exists a smooth plane curve $X \subset \mathbb{P}^2$ of degree d defined over the reals, such that $(X \cap L)(\mathbb{R}) \neq \emptyset$ for every real line $L \subset \mathbb{P}^2$.

The proof of Theorem 1 presented in in Sections 3 and 4 uses deformation arguments. These arguments, in turn, rely on the preliminary material in Section 2.

2. Continuity of minimizer and maximizer functions

Lemma 2. Let V, W and F be topological manifolds. Assume that F be compact, $\pi : V \to W$ is an F-fibration, and $f : V \to \mathbb{R}$ is a continuous function. Then the minimizer $\mu(w) := \min\{f(v) | \pi(v) = w\}$ and the maximizer $\mathcal{M}(w) := \max\{f(v) | \pi(v) = w\}$ are continuous functions $W \to \mathbb{R}$.

Proof. Since F is compact, f assumes its minimal and maximal values on every fiber $\pi^{-1}(w)$. Hence, the functions μ and \mathcal{M} are well defined. Note also that if we replace f by $-f$, we will change $\mu(w)$ to $-\mathcal{M}(w)$. Thus it suffices to show that μ is continuous. Finally, to show that μ is continuous at $w \in W$, we may replace W by a small neighborhood of

2010 Mathematics Subject Classification. 14P05, 14H50.

Key words and phrases. Plane curve, maximizer function, quartic curve, bitangent.

The author was partially supported by NSERC Discovery Grant 250217-2012.
Corollary 3. Let $d \geq 2$ be an even integer, Pol_d be the affine space of homogeneous polynomials of even degree d in 3 variables, and $Y = \mathbb{P}^2$ be the dual projective plane \mathbb{P}^2, parametrizing the lines in \mathbb{P}^3.

Corollary 3. Let $d \geq 2$ be an even integer, Pol_d be the affine space of homogeneous polynomials of even degree d in 3 variables, and $Y = \mathbb{P}^2$ be the dual projective plane \mathbb{P}^2, parametrizing the lines in \mathbb{P}^3. Then the functions

$$m_p(L) \text{ and } M_p(L) : \text{Pol}_d(\mathbb{R}) \times \mathbb{P}^2(\mathbb{R}) \to \mathbb{R}$$

given by $m_p(L) = \min \{ p(x) \mid x \in L(\mathbb{R}) \}$ and $M_p(L) = \max \{ p(x) \mid x \in L(\mathbb{R}) \}$ are well-defined and continuous.

Note that a polynomial $p(x, y, z)$ of even degree d gives rise to a continuous function $\mathbb{P}^2(\mathbb{R}) \to \mathbb{R}$ given by

$$(x : y : z) \mapsto \frac{p(x, y, z)}{(x^2 + y^2 + z^2)^{d/2}}.$$

By a slight abuse of notation, we will continue to denote this function by p.

Proof of Corollary 3. We will apply Lemma 2 in the following setting. Let $W := \text{Pol}_d \times \mathbb{P}^2$ and

$$V := \{(p, L, a) \mid a \in L\} \subset \text{Pol}_d \times \mathbb{P}^2 \times \mathbb{P}^2.$$

In other words, $V = \text{Pol}_d \times \text{Flag}(1, 2)$, where $\text{Flag}(1, 2)$ is the flag variety of $(1, 2)$-flags in a 3-dimensional vector space. Clearly V and W are smooth algebraic varieties defined over \mathbb{R}. Their sets of real points, $V(\mathbb{R})$ and $W(\mathbb{R})$, are topological manifolds and the projection $\pi : V(\mathbb{R}) \to W(\mathbb{R})$ to the first two components is a topological fibration with compact fiber $F = \mathbb{P}^1(\mathbb{R})$.

Applying Lemma 2 to the continuous function $f : V(\mathbb{R}) \to \mathbb{R}$ given by $f(p, L, a) := p(a)$, where $p(a)$ is evaluated as in (2.1), we deduce the continuity of the real-valued functions $m_p(L) = \mu(p, L)$ and $M_p(L) = M(p, L)$ on $\text{Pol}_d(\mathbb{R}) \times \mathbb{P}^2(\mathbb{R})$.

Proposition 4. Let $p \in \mathbb{R}[x, y, z]$ be a homogeneous polynomial of even degree and $X \subset \mathbb{P}^2$ be the zero locus of p. Set $m(p) := \max_{L \in \mathbb{P}^2} m_p(L)$ and $M(p) := \min_{L \in \mathbb{P}^2} M_p(L)$, where L ranges over the real lines in \mathbb{P}^2. Then

(a) $m(p)$ and $M(p)$ are well-defined continuous functions $\text{Pol}_d(\mathbb{R}) \to \mathbb{R}$.

(b) $m(p) \leq M(p)$.

(c) $(X \cap L)(\mathbb{R}) \neq \emptyset$ for every real line $L \subset \mathbb{P}^2$ if and only if $m(p) \leq 0 \leq M(p)$.

(d) p assumes both positive and negative values on each real line $L \subset \mathbb{P}^2$ if and only if $m(p) < 0 < M(p)$.

(e) If $m(p) = M(p) = 0$, then X is not a smooth curve.

Proof. By Corollary 3, $M_p(L) \text{ and } m_p(L)$ are continuous functions $\text{Pol}_d(\mathbb{R}) \times \mathbb{P}^2(\mathbb{R}) \to \mathbb{R}$. Since $\mathbb{P}^2(\mathbb{R})$ is compact, Lemma 2 tells us that the functions $m(p)$ and $M(p) : \text{Pol}_d(\mathbb{R}) \to \mathbb{R}$ are well-defined and continuous. This proves (a).

(c) and (d) are immediate consequences of the definition of $m(p)$ and $M(p)$.

w and thus assume that $V = W \times F$ and $\pi : V \to W$ is projection to the first factor. In this special case, the continuity of μ is well known; see, e.g., [Wo] (cf. also [Da]).

□
To prove (b) and (e), choose lines \(L_1, L_2 \subset \mathbb{P}^2 \) such that \(m_p(L) \) attains its maximal value \(m(p) \) at \(L = L_1 \) and \(M_p(L) \) attains its minimal value \(M(p) \) at \(L = L_2 \). If \(L_1 \) and \(L_2 \) intersect at a point \(a \in \mathbb{P}^2(R) \), then
\[
m(p) = m_p(L_1) \leq p(a) \leq M_p(L_2) = M(p).
\]
This proves (b).

In part (e), where we further assume that \(m(p) = M(p) = 0 \), the inequalities (2.2) tell us that \(p(a) = 0 \) is the maximal value of \(p \) on \(L_1(R) \) and the minimal value of \(p \) on \(L_2(R) \). Hence, \(a \) lies on \(X \), and both \(L_1 \) and \(L_2 \) are tangent to \(X \) at \(a \). We want to show that \(X \) cannot be a smooth curve. Assume the contrary. Then \(X \) has a unique tangent line at \(a \). Thus \(L_1 = L_2 \), and \(0 = m_p(L_1) = M_p(L_2) = M_p(L_1) \). We conclude that \(p \) is identically zero on \(L_1(R) = L_2(R) \). Consequently, \(L_1 = L_2 \subset X \), contradicting our assumption that \(X \) is a smooth curve. \(\square \)

3. Proof of Theorem 1(a)

The case where \(d = 2 \) was handled in the Introduction; we will thus assume that \(d = 4 \).

Lemma 5. Let \(p \in \mathbb{R}[x, y, z] \) be a homogeneous polynomial of degree 4 cutting out a smooth quartic curve \(X \) in \(\mathbb{P}^2 \). Then either \(m(p) \geq 0 \) or \(M(p) \leq 0 \).

Proof. By a theorem of H. G. Zeuthen [Zeu], \(X \) has a real bitangent line \(L \subset \mathbb{P}^2 \). (For a modern proof of Zeuthen’s theorem, we refer the reader to [Ru, Corollary 4.11]; cf. also [PSV].) The restriction of \(p(x, y, z) \) to \(L \) is a real quartic polynomial with two double roots, i.e., a polynomial of the form \(\pm q(s, t)^2 \), where \(s \) and \(t \) are linear coordinates on \(L \), and \(q \in \mathbb{R}[s, t] \) is a binary form of degree 2. In particular, \(p \) does not change sign on \(L \), i.e., either (i) \(p(a) \geq 0 \) for every \(a \in L(R) \) or (ii) \(p(a) \leq 0 \) for every \(a \in L(R) \). In case (i), \(m(p) \geq m_p(L) \geq 0 \) and in case (ii), \(M(p) \leq M_p(L) \leq 0 \). \(\square \)

We are now ready to finish the proof of Theorem 1(a) for \(d = 4 \). Assume the contrary: there exists a smooth real quartic curve \(X \subset \mathbb{P}^2 \) such that \((X \cap L)(R) \neq \emptyset \) for every real line \(L \subset \mathbb{P}^2 \). Let \(p \in \mathbb{R}[x, y, z] \) be a defining polynomial for \(X \). By Proposition 4(c), \(m(p) \leq 0 \leq M(p) \). In view of Lemma 5, after possibly replacing \(p \) by \(-p\), we may assume that \(m(p) = 0 \). Proposition 4(e) now tell us that \(m(p) = 0 < M(p) \). Let \(p_t(x, y, z) = p(x, y, z) - t(x^2 + y^2 + z^2)^2 \), where \(t \) is a real parameter, and let \(X_t \subset \mathbb{P}^2 \) be the quartic curve cut out by \(p_t \). Note that \(X_t \) can be singular for only finitely many values of \(t \in \mathbb{R} \). Thus we can choose \(t \in (0, M(p)) \) so that \(X_t \) is smooth. Since \(x^2 + y^2 + z^2 \) is identically 1 on \(\mathbb{P}^2(R) \) (cf. (2.1)), we have
\[
m(p_t) = m(p) - t < 0 < M(p) - t = M(p_t).
\]
This contradicts Lemma 5, which asserts that \(m(p_t) \geq 0 \) or \(M(p_t) \leq 0 \). \(\square \)

4. Proof of Theorem 1(b)

Given an even integer \(d \geq 6 \), set \(p(x, y, z) := (x^3 + y^3 + z^3)^2(x^2 + y^2 + z^2)^{(d-6)/2} \) and
\[
p_t(x, y, z) = p(x, y, z) - t(x^d + y^d + z^d),
\]
where \(t \) is a real parameter. In view of Proposition 4(c), it suffices to show that if \(t > 0 \) is sufficiently small, then (i) \(X_t \) is smooth and (ii) \(m(p_t) < 0 < M(p_t) \).
Since the Fermat curve, \(x^d + y^d + z^d = 0 \), is smooth, \(X_t \) is singular for only finitely many values of \(t \), and (i) follows.

To prove (ii), note that \(p \) is non-negative but is not identically 0 on any real line \(L \subset \mathbb{P}^2 \). Thus \(M_p(L) > 0 \) and consequently, \(M(p) > 0 \). By Proposition 4(a), \(M(p_t) > 0 \) for small \(t \). On the other hand, for every real line \(L \subset \mathbb{P}^2 \), the cubic polynomial \(x^3 + y^3 + z^3 \) vanishes at some real point \(a \) of \(L \). Hence for every \(t > 0 \), we have \(p_t(a) < 0 \) and thus \(m_{p_t}(L) < 0 \). We conclude that \(m(p_t) < 0 \), as desired. \(\square \)

Acknowledgments. The author is grateful to the anonymous referee for simplifying the argument in Section 4 and to Fernando Cukierman, Corrado de Concini, Kee Yuen Lam, Grigory Mikhalkin and Benedict Williams for stimulating discussions.

References

Department of Mathematics, University of British Columbia, Vancouver, B.C., Canada V6T 1Z2

E-mail address: reichst@math.ubc.ca