A NON-SPLIT TORSOR WITH TRIVIAL FIXED POINT OBSTRUCTION

Z. REICHSTEIN AND B. YOUSSIN

Abstract. Let G be a linear algebraic group and X be an irreducible algebraic variety with a generically free G-action, all defined over an algebraically closed base field of characteristic zero. It is well known that X can be viewed as a G-torsor, representing a class $[X]$ in $H^1(K,G)$, where K is the field of G-invariant rational functions on X. We have previously shown that if X has a smooth H-fixed point for some non-toral diagonalizable subgroup of G then $[X] \neq 1$. It is natural to ask if the converse is true, assuming G is connected and X is projective and smooth. In this note we show that the answer is “no”.

1. Introduction

Let G be a linear algebraic group defined over an algebraically closed base field k of characteristic zero. By a G-variety we shall mean an algebraic variety X with a regular action of G (defined over k). We shall say that X is generically free if G acts freely on a dense open subset of X. Birational isomorphism classes of G-varieties X with $k(X)^G = K$ are in 1-1 correspondence with $H^1(K,G)$; see [6, 1.3]. We will call X split if one (and thus all) of the following equivalent conditions hold.

• X represents the trivial class in $H^1(K,G)$.
• X is birationally isomorphic to $Y \times G$ as a G-variety. Here Y is an algebraic variety with trivial G-action, and G acts on $Y \times G$ by left translations on the second factor.
• The (rational) quotient map $X \twoheadrightarrow X/G$ has a rational section;

cf. [6, 1.4]. We shall say that a subgroup of G is toral if it lies in a subtorus of G and non-toral otherwise. The starting point for this note is the following:

Proposition 1. ([10, Lemma 4.3]) Let X be a generically free G-variety. If X has a smooth H-fixed point for some non-toral diagonalizable subgroup of H of G, then X is not split.

In other words, the presence of a smooth H-fixed point on X is an obstruction to X being split; we shall refer to it as the fixed point obstruction.

1991 Mathematics Subject Classification. 14L30, 16K20.

Key words and phrases. Algebraic group, group action, non-toral subgroup, torsor, division algebra.

Z. Reichstein was supported in part by an NSERC research grant.
In the case where H is a non-toral finite abelian subgroup of G, we have described this obstruction in a more quantitative way by giving lower bounds on the essential dimension [9, Theorem 1.2], splitting degree [10, Theorem 1.1], and the size of a splitting group of X [10, Theorem 1.2] in terms of H. (Recall that a split variety has essential dimension 0, splitting degree 1 and splitting group $\{1\}$.)

The question that remained unanswered in [9] and [10] is whether or not the converse to Proposition 1 is also true. Of course, in stating the converse, we need to assume that the G-variety X is smooth and complete; otherwise the fixed point obstruction may not be “visible” because it may “hide” in the “boundary” or in the singular locus of X. Fortunately, every class in $H^1(K, G)$ can be represented by a smooth complete (and even projective) G-variety; see [10, Proposition 2.2]. Moreover, the fixed point obstruction is detectable on any such model in the following sense. Suppose X is a generically free G-variety and Y is a smooth complete G-variety birationally isomorphic to X. If X has a smooth H-fixed point for some non-toral diagonalizable subgroup $H \subset G$ then so does Y; see [9, Proposition A2].

We also remark that if H is toral then $X^H \neq \emptyset$ by the Borel Fixed Point Theorem [1, Theorem 10.4]; thus only non-toral subgroups H are of interest here. To sum up, we will address the following:

Question 2. Is the fixed point obstruction the only obstruction to splitting? In other words, if X is a smooth projective generically free G-variety such that $X^H = \emptyset$ for every diagonalizable non-toral subgroup $H \subset G$, is X necessarily split?

Example 3. If G is a finite group then the answer is “no”, because G can be made to act freely on an irreducible smooth projective curve X. Over \mathbb{C} such a curve can be constructed as follows. Suppose G is generated by n elements, g_1, \ldots, g_n. Let Y be a curve of genus n. Then the fundamental group $\pi_1(Y)$ is given by $2n$ generators $a_1, \ldots, a_n, b_1, \ldots, b_n$ and one relation

$$\prod_{i=1}^n a_i b_i a_i^{-1} b_i^{-1} = 1.$$

The surjective homomorphism $\pi_1(Y) \rightarrow G$, sending a_i to g_i and b_i to 1, gives rise to an unramified G-cover $X \rightarrow Y$ of Riemann surfaces. By the Riemann Embedding Theorem, X is a smooth projective algebraic curve with a free G-action. The same argument goes through over any algebraically closed base field k of characteristic zero, provided that $\pi_1(Y)$ is interpreted as Grothendieck’s algebraic fundamental group of Y; see [4, Expose XIII, Corollaire 2.12].

Question 2 becomes more delicate if we G is assumed to be connected. The purpose of this note is to show that under this assumption the answer is still “no”. Our main result is the following:

Theorem 4. Let p be an odd prime. Then there exists a smooth projective generically free PGL_p-variety X with the following properties:
(a) X is not split,
(b) $X^H = \emptyset$ for every diagonalizable non-toral subgroup H of PGL_p,
(c) $k(X)^{\text{PGL}_p}$ is a purely transcendental extension of k.

The rest of this paper is devoted to proving Theorem 4. In Sections 2 and 3 we reduce the proof to the question of existence of a certain division algebra of degree p; see Proposition 7. Our construction of this algebra in Section 4 relies on a criterion of Fein, Saltman and Schacher [2].

2. Nontoral subgroups of PGL_p

Consider the $p \times p$-matrices
\[
\sigma = \begin{pmatrix}
1 & 0 & \ldots & 0 \\
0 & \zeta & \ldots & 0 \\
\vdots & & \ddots & \vdots \\
0 & 0 & \ldots & \zeta^{p-1}
\end{pmatrix}
\quad \text{and} \quad
\tau = \begin{pmatrix}
0 & 0 & \ldots & 1 \\
1 & 0 & \ldots & 0 \\
0 & 1 & \ldots & 0 \\
0 & 0 & \ldots & 1
\end{pmatrix}
\]
where ζ is a primitive pth root of unity in k. Note that
\[
\sigma \tau = \zeta \tau \sigma .
\]
Thus the elements $\sigma, \tau \in \text{PGL}_p$, represented, respectively, by σ and τ, generate an abelian subgroup; we shall denote this subgroup by A. Clearly $A \cong (\mathbb{Z}/p\mathbb{Z}) \times (\mathbb{Z}/p\mathbb{Z})$. It is well known that, up to conjugacy, A is the unique non-toral elementary abelian subgroup of PGL_p; cf., e.g., [3, Theorem 3.1]. In the sequel we will need to know that A is in fact the unique diagonalizable subgroup with this property. For lack of a suitable reference, we give a direct elementary proof of this fact below.

Lemma 5. Let H be a non-toral diagonalizable subgroup of PGL_p, where p is a prime. Then H is conjugate to A.

In the sequel we will only need this lemma for odd p; however, for the sake of completeness, we will treat the case $p = 2$ as well.

Proof. Let \tilde{H} be the preimage of H in SL_p. Then for every $x, y \in \tilde{H}$, $x y x^{-1} y^{-1}$ is a scalar matrix in SL_p, i.e., a matrix of the form $f(x, y)I$, where I is the $p \times p$ identity matrix and $f(x, y)$ is a pth root of unity. If $f(x, y) = 1$ for every $x, y \in \tilde{H}$ then \tilde{H} is a commutative subgroup of SL_p consisting of semisimple elements. This implies that \tilde{H} is toral in SL_p (see, e.g., [1, Proposition 8.4]) and thus H is toral in PGL_p, contradicting our assumption. Therefore, $f(x, y)$ is a primitive pth root of unity for some $x, y \in \tilde{H}$. Replacing x by y^i for an appropriate i, we may assume $f(x, y) = \zeta$, i.e.,
\[
xy = \zeta yx .
\]
Suppose v is an eigenvector of x with associated eigenvalue $\lambda \neq 0$. Then (2) shows that $v_i = y^i(v)$ is an eigenvector of x with eigenvalue $\lambda \zeta^i$. These
eigenvalues are distinct for \(i = 0, 1, \ldots, p - 1 \), and hence, the eigenvectors \(v = v_0, v_1, \ldots, v_{p-1} \) form a basis of \(k^p \). Moreover, since \(y^p(v) \) is an eigenvector for \(x \) with eigenvalue \(\lambda \) and the \(\lambda \)-eigenspace of \(x \) is 1-dimensional, \(y^p(v) = cv_0 \) for some \(c \in k \). Writing \(x \) and \(y \) in the basis \(v_0, \ldots, v_{p-1} \), we see that

\[
x = \lambda \sigma \quad \text{and} \quad y = \text{diag}(c, 1, \ldots, 1) \tau ,
\]

where \(\sigma \) and \(\tau \) are as in (1). Since \(\det(y) = 1 \), we see that \(c = (-1)^{p+1} \). We now consider two cases:

(i) \(p \) is odd. Then \(c = 1 \) and \(x, y \in \text{SL}_p \) represent, respectively, \(\sigma \) and \(\tau \) in \(\text{PGL}_p \).

(ii) \(p = 2 \). Here \(c = -1 \), and in the basis \(v_0, v_1 \),

\[
x = \lambda \sigma = \begin{pmatrix} \lambda & 0 \\ 0 & -\lambda \end{pmatrix} \quad \text{and} \quad y = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}
\]

Let \(g = \text{diag}(1, i) \), where \(i \) is a primitive 4th root of unity. Then \(gxg^{-1} \) and \(gyyg^{-1} \) represent, respectively, \(\sigma \) and \(\tau \) in \(\text{PGL}_p \).

Thus, after conjugation, we may assume that \(A \subset H \). Since \(A \) is self-centralizing in \(\text{PGL}_p \) (cf. [9, Lemma 8.12(b)]), we conclude that \(H = A \). \(\square \)

3. Division algebras

Let \(F \) be a finitely generated field extension of \(k \). Recall that elements of \(H^1(F, \text{PGL}_n) \) may be interpreted in two ways:

- as central simple algebras of degree \(n \) with center \(F \); see [11, Section 10.5] or [5, p. 396], and
- as birational isomorphism classes of irreducible generically free \(\text{PGL}_n \)-varieties \(X \) such that \(k(X)^{\text{PGL}_n} = F \); see [6, Section 1.3] (cf. also [12, Section I.5.2]).

Thus to every central simple algebra \(D \) of degree \(n \) over \(F \) we can associate a generically free \(\text{PGL}_n \)-variety \(X_D \) with \(k(X_D)^{\text{PGL}_n} = F \). Moreover, \(X_D \) is uniquely defined up to birational isomorphism of \(\text{PGL}_n \)-varieties, and \(D \) can be recovered from \(X_D \) as the algebra of \(\text{PGL}_n \)-equivariant rational maps \(X_D \to M_n \); see [7, Proposition 8.6 and Lemma 9.1]. We shall write \(D = \text{RMaps}_{\text{PGL}_n}(X_D, M_n) \). Note that \(D \cong M_n(F) \) if and only if the \(\text{PGL}_n \)-variety \(X_D \) is split.

Proposition 6. Let \(D \) be a division algebra of degree \(p \) with center \(K \) and \(X_D \) be an algebraic variety representing the class of \(D \) in \(H^1(K, \text{PGL}_n) \). Let \(A \) be the subgroup of \(\text{PGL}_p \) defined in Section 2. If \(D \) has an element of (reduced) trace 0 and norm 1 then \(X_D \) does not have a smooth \(A \)-fixed point.

Proof. The proposition is proved in [8]; however, since it is not stated there in the exact form we need, we supply a short explanation. Let \(x \in D \) be an
element of trace zero and norm 1. Then the system
\[
\begin{align*}
\text{Nrd}(x_1) &= \cdots = \text{Nrd}(x_p) \\
\text{Trd}(x_1 \cdots x_p) &= 0
\end{align*}
\]
has a nontrivial solution in \(D\), namely \((x_1, \ldots, x_p) = (x, 1, \ldots, 1)\). (Here, as usual, \(\text{Nrd}\) and \(\text{Trd}\) denote, respectively, the reduced norm and the reduced trace in \(D\).) On the other hand, by [8, Proposition 3.3 and Lemma 5.3], if \(X_D\) has a smooth \(A\)-fixed point then the system (3) has only the trivial solution \((x_1, \ldots, x_p) = (0, \ldots, 0)\). This shows that \(X_D\) does not have a smooth \(A\)-fixed point. \(\square\)

We now observe that in order to prove Theorem 4 it is enough to establish the following:

Proposition 7. There exists a division algebra \(D\) of degree \(p\) with center \(F\) such that

(i) \(F\) is a purely transcendental extension of \(k\), and

(ii) there exists an element \(a \in D\) such that \(\text{Trd}(a) = 0\) and \(\text{Nrd}(a) = 1\).

Indeed, suppose \(D\) is a division algebra satisfying the conditions of Proposition 7. Let \(X = X_D\) be a smooth projective \(\text{PGL}_p\)-variety representing the class of \(D\) in \(H^1(K, \text{PGL}_p)\); such a model exists by [10, Proposition 2.2]. We now check that \(X = X_D\) has properties (a) - (c) claimed in the statement of Theorem 4:

(a) \(X\) is not split; otherwise \(D \simeq \text{M}_p(K)\) would not be a division algebra.

(b) By Lemma 5, we may assume \(H = A\), and by Proposition 6, \(A\) acts on \(X\) without fixed points.

(c) \(k(X)^{\text{PGL}_p} = F\) is purely transcendental over \(k\) by Proposition 7(i). \(\square\)

4. CONCLUSION OF THE PROOF

Our strategy for proving Proposition 7 will be to find an element \(a\) of norm 1 and trace 0 in a suitable field extension \(L/K\) of degree \(p\), then embed this field extension into a division algebra.

Lemma 8. For any \(n \geq 3\) there exists a field extension \(L/K\) of degree \(n\) such that

(i) \(K\) is a purely transcendental extension of \(k\) of transcendence degree 1 and

(ii) \(\text{Tr}_{L/K}(a) = 0\) and \(\text{N}_{L/K}(a) = 1\) for some \(a \in L\). Here \(\text{Tr}_{L/K}(a)\) and \(\text{N}_{L/K}(a)\) are the trace and the norm of \(a\) in \(L/K\).

Proof. Consider the polynomial
\[
P(s, t) = s^n + ts + (-1)^n \in k[t, s],
\]
where \(t\) and \(s\) are independent commuting variables over \(k\). Since we can write \(P = P_0t + P_1\), where \(P_0 = s\) and \(P_1 = s^n + (-1)^n\) are relatively prime in \(k[s]\), we conclude that \(P\) is irreducible in \(k[t, s]\), and hence, in \(k(t)[s]\).
Now let \(K = k(t), L = K[s]/(P(t,s)) \) and let \(a \) be the image of \(s \) in \(L \). Then condition (i) is clearly satisfied. Moreover, since \(L/K \) is a field extension of degree \(n \) and \(P \) is the minimal polynomial of \(a \) over \(K \), \(-1\)^{n-1} \(N_{L/K}(a) \) are, respectively, the coefficient of \(s^{n-1} \) and the constant term of \(P \). Thus \(\text{Tr}_{L/K}(a) = 0 \) and \(N_{L/K}(a) = 1 \), as claimed. □

We are now ready to prove Proposition 7. Let \(L/K \) be as in Lemma 8, with \(n = p \). It is sufficient to show that there exists a division algebra \(D \) with center \(F = K(\lambda_1, \ldots, \lambda_r) \) and maximal subfield \(L(\lambda_1, \ldots, \lambda_r) \), where \(\lambda_1, \ldots, \lambda_r \) are algebraically independent variables over \(K \). Then \(D \) is the algebra we want: \(F \) is a purely transcendental extension of \(k \) and an element \(a \in D \) with desired properties can be found in \(L \subset D \).

To show that such a \(D \) exists, we appeal to a result of Fein, Saltman and Schacher [2, Corollary 5.4]. Let \(G \) be a finite group, \(H \) be a subgroup of \(G \) and \(q \) be a prime dividing \(|G| \). Following [2], we define \(m_q(G, H) \) to be the maximal value of \(|T| \), taken over all \(q \)-subgroups \(T \) of \(G \) which are contained in \(\bigcup_{g \in G} gHg^{-1} \).

Returning to the setting of Lemma 8, let \(E \) be the Galois closure of \(L \) over \(K \), \(G = \text{Gal}(E/K) \) and \(H = \text{Gal}(E/L) \). [2, Corollary 5.4] guarantees the existence of \(D \) if \(m_q(G, H) = |H_q| \) for every \(q \) dividing \(|L : K| \); here \(H_q \) is a Sylow \(q \)-subgroup of \(H \). In our case \(|L : K| = p \), so we only need to check that \(m_p(G, H) = |H_p| \).

Note that \(E \) is the splitting field and \(G \) is the Galois group of the irreducible polynomial (4) over \(K = k(t) \), with \(n = p \). Thus \(G \) is naturally a subgroup of \(S_p \) and consequently \(|G| \) is not divisible by \(p^2 \). On the other hand, \(|G : H| = |L : K| = p \). We conclude that \(|H| \) is not divisible by \(p \), i.e., \(|H_p| = 1 \). Moreover, the order of every element of \(\bigcup_{g \in G} gHg^{-1} \) is prime to \(p \); thus \(m_p(G, H) = 1 \). To sum up, \(m_p(G, H) = 1 = |H_p| \), and [2, Corollary 5.4] applies.

This completes the proof of Proposition 7 and thus of Theorem 4. □

ACKNOWLEDGEMENTS

The authors are grateful to B. Fein, V. L. Popov and M. Thaddeus for stimulating discussions and to J.-P. Serre and the referee for helpful comments on an earlier draft of this paper.

REFERENCES

Department of Mathematics, University of British Columbia, Vancouver, BC V6T 1Z2, Canada
E-mail address: reichst@math.ubc.ca
URL: www.math.ubc.ca/~reichst
Hashofar 26/3, Maale Adumim, Israel
E-mail address: byoussin@yahoo.com