The Hermite-Joubert problem over p-closed fields

Matthew Brassil and Zinovy Reichstein

Abstract. An 1861 theorem of Ch. Hermite [He] asserts that every field extension (and more generally, every étale algebra) E/F of degree 5 can be generated by an element $a \in E$ whose minimal polynomial is of the form

$$f(x) = x^5 + b_2 x^3 + b_4 x + b_5.$$

Equivalently, $\text{tr}_{E/F}(a) = \text{tr}_{E/F}(a^3) = 0$. A similar result for étale algebras of degree 6 was proved by P. Joubert in 1867; see [Jo]. It is natural to ask whether or not these classical theorems extend to étale algebras of degree $n \geq 7$. Prior work of the second author shows that the answer is “no” if $n = 3^a$ or $n = 3^a + 3^b$, where $a > b \geq 0$.

In this paper we consider a variant of this question where F is required to be a p-closed field. More generally, we give a necessary and sufficient condition for an integer n, a field F_0 and a prime p to have the following property: Every étale algebra E/F of degree n, where F is a p-closed field containing F_0, has an element $0 \neq a \in E$ such that $F[a] = E$ and $\text{tr}(a) = \text{tr}(a^p) = 0$.

As a corollary (for $p = 3$), we produce infinitely many new values of n, such that the classical theorems of Hermite and Joubert do not extend to étale algebras of degree n. The smallest of these new values are $n = 13, 31, 37, \text{and } 39$.

1. Introduction

An 1861 theorem of Ch. Hermite [He] asserts that for every étale algebra E/F of degree 5 there exists an element $0 \neq a \in E$ whose characteristic polynomial is of the form

$$f(x) = x^5 + b_2 x^3 + b_4 x + b_5.$$

An easy application of Newton’s formulas shows that this is equivalent to $\text{tr}_{E/F}(a) = \text{tr}_{E/F}(a^3) = 0$; see, e.g., [Co$_2$, section 1]. A similar result for étale algebras of degree 6 was proved by P. Joubert in 1867; see [Jo]. For modern proofs of these results, see [Co$_2$, Kr]. (Here we are assuming that F is an infinite field of characteristic $\neq 2$ or 3. As usual, by an étale algebra E/F of degree n we mean a direct product $E := E_1 \times \ldots \times E_r$, where each E_i is a separable field extension of F and $[E_1 : F] + \ldots + [E_r : F] = n$.)

It is natural to ask if the above-mentioned theorems of Hermite and Joubert can be extended to $n \geq 7$; cf., e.g. [Co$_2$, Section 4]. The answer is “no” if n is of the form 3^k

2010 Mathematics Subject Classification. 12F10, 14J70 (primary), 14G05, 11G05 (secondary).

Key words and phrases. Hermite-Joubert problem, étale algebra, hypersurface, rational point, p-closed field, elliptic curve.

The second author has been partially supported by a Discovery Grant from the National Science and Engineering Board of Canada.
or $3^{k_1} + 3^{k_2}$, where $k_1 > k_2 \geq 0$; see [Re1, Theorem 1.3] or [RY2, Corollary 1.7(a) and Theorem 1.8]. For other values of n (in particular, for $n = 7$), this question remains open. One can also ask a similar (even more difficult) question for an arbitrary prime p.

Hermite-Joubert Problem 1.1. Let $n \geq 2$ be an integer, p be a prime, and F_0 be a base field. Which triples (F_0, p, n) have the following property: for every field extension F/F_0 and every étale algebra E/F of degree n, there exists an element $0 \neq a \in E$ such that $\text{tr}(a) = \text{tr}(a^p) = 0$?

We will usually want to choose the element $a \in E$ above so that $F[a] = E$, i.e., a generates E as an F-algebra. We will also consider a variant of this problem, where a is only required to satisfy $\text{tr}(a^p) = 0$, rather than $\text{tr}(a) = \text{tr}(a^p) = 0$.

In this paper we will show that these questions become tractable if we restrict our attention to the case, where F is a p-closed field. Recall that a field F is called p-closed if the degree of every finite field extension of F is a power of p. Some authors use the term p-field in place of p-closed field; see, e.g., [Pf, Definition 4.1.11].

Local Hermite-Joubert Problem 1.2. Let $n \geq 2$ be an integer, p be a prime, and F_0 be a base field. Which triples (F_0, p, n) have the following property: for every p-closed field F containing F_0 and every étale algebra E/F of degree n, there exists an element $0 \neq a \in E$ such that $\text{tr}(a) = \text{tr}(a^p) = 0$?

Equivalently, for an arbitrary field F and an étale algebra E/F of degree n, we are asking if there is a finite a field extension F'/F of degree prime to p and an element $0 \neq a \in E' := E \otimes_{F_0} F'$ such that $\text{tr}_{E'/F'}(a) = \text{tr}_{E'/F'}(a^p) = 0$; see Lemma 3.1.

Before stating our main results, we recall the definition of the “general field extension” E_n/F_n of degree n. Let F_0 be a base field and x_1, \ldots, x_n be independent variables. Set $L_n := F_0(x_1, \ldots, x_n)$, $F_n := L_n^{S_n}$ and $E_n := L_n^{S_{n-1}} = F_n(x_1)$, where S_n acts on L_n by permuting x_1, \ldots, x_n and S_{n-1} by permuting x_2, \ldots, x_n.

Let p be a prime. We will say that

$$n = p^{k_1} + \ldots + p^{k_m}$$

is a base p presentation (or base p expansion) of n if each power of p appears in the sum at most $p - 1$ times. It is well known that the base p expansion of n is unique.

Theorem 1.3. Let p be a prime, F_0 be a field of characteristic $\neq p$ containing a primitive pth root of unity ζ_p, and $n = p^{k_1} + \ldots + p^{k_m}$ be the base p expansion of an integer $n \geq 3$. Then the following conditions are equivalent.

1. For every p-closed field F containing F_0 and every n-dimensional étale algebra E/F, there exists an element $0 \neq a \in E$ such that $\text{tr}_{E/F}(a^p) = 0$.

2. There exists a finite field extension F'/F_n of degree prime to p and an element $0 \neq a \in E' := E_n \otimes_{F_n} F'$ such that $\text{tr}_{E'/F'}(a^p) = 0$. Here E_n/F_n is the general field extension of degree n defined above.

3. The equation

$$p^{k_1} y_1^p + \ldots + p^{k_m} y_m^p = 0$$

has a solution $y = (y_1 : \ldots : y_m) \in \mathbb{P}^{n-1}(F_0)$.

Moreover, if (3) holds, then the element a in parts (1) and (2) can be chosen so that $E = F[a]$ and $E' = F'[a]$, respectively.

The implication (1) \implies (2) readily follows from the definition of a p-closed field. The proof of the implication (2) \implies (3), based on the fixed point method, is implicit in [RY2, Sections 6] (where m is assumed to be 2). We will present a self-contained argument in Section 4. The implication (3) \implies (1) was initially motivated by [DR, Section 8]; the proof we present in Section 5 is entirely elementary.

Theorem 1.4. Let p be a prime, F_0 be a field of characteristic $\neq p$ containing a primitive pth root of unity ζ_p, and $n = p^{k_1} + \ldots + p^{k_m}$ be the base p expansion of an integer $n \geq 3$. Then the following conditions are equivalent.

1. For every p-closed field F containing F_0 and every n-dimensional étale algebra E/F, there exists an element $0 \neq a \in E$ such that $\text{tr}_{E/F}(a) = \text{tr}_{E/F}(a^p) = 0$.

2. There exists a finite field extension F'/F_n of degree prime to p and an element $0 \neq a \in E' := E_n \otimes_{F_n} F'$ such that $\text{tr}_{E'/F'}(a) = \text{tr}_{E'/F'}(a^p) = 0$.

3. The system of equations

$$\begin{align*}
 p^{k_1}y_1 + \ldots + p^{k_m}y_m &= 0 \\
 p^{k_1}y_1^p + \ldots + p^{k_m}y_m^p &= 0
\end{align*}$$

has a solution $y = (y_1 : \ldots : y_m) \in \mathbb{P}^{m-1}(F_0)$.

Moreover, assume the equivalent conditions (1), (2) and (3) hold, $(\text{char}(F_0), p, n) \neq (2, 3, 3), (2, 3, 4), \text{ or } (3, 2, 3)$, and one of the following additional conditions is met:

(i) there is a solution $y = (y_1 : \ldots : y_m) \in \mathbb{P}^{m-1}(F_0)$ to (1.2), such that $y \neq (1 : \ldots : 1)$, or

(ii) $p > 2$ and $\text{char}(F_0) \neq 2$.

Then the element a in parts (1) and (2) can be chosen so that $E = F[a]$ and $E' = F'[a]$, respectively.

Note that conditions (i) and (ii) are very mild. In particular, condition (i) is automatic if $\text{char}(F_0)$ does not divide n, since in this case $(1 : \ldots : 1)$ is not a solution to (1.2).

We will prove Theorem 1.4 in Section 6 by modifying our proof of Theorem 1.3. Assertion (*) of Theorem 1.3 follows from a result of J.-L. Colliot-Thélène [CT]; see Section 8. Assertion (**) of Theorem 1.4 requires a variant of Colliot-Thélène’s result, which is proved in Section 7.

For $p = 2$, Springer’s theorem about rational points of quadric hypersurfaces allows us to remove the requirement that F is a 2-closed field in part (1) of Theorems 1.3 and 1.4. This leads to a nearly complete solution of the Hermite-Joubert Problem 1.1 for $p = 2$; see Corollary 10.1. The same arguments go through for $p = 3$, if we assume a long-standing conjecture of J. W. S. Cassels and P. Swinnerton-Dyer about rational points on cubic hypersurfaces; see Section 11.

It is natural to ask for which n, p and F_0 there exist non-trivial solutions to equation (1.1) and the system (1.2). Some partial answers to this question are given in Section 12. In particular, we show that for $p \geq 3$ the system (1.2) has a solution over any field F_0, if when we write $n = [n_dn_{d-1} \ldots n_0]_p$ in base p, one of the digits n_k is ≥ 2, or if the number of non-zero digits is $\geq p + 3$; see Lemma 12.3. (Here n_k is the number of
times p^k occurs in the presentation $n = p^{k_1} + \ldots + p^{k_m}$ in Theorems 1.3 and 1.4. If each n_k is 0 or 1, then the number of non-zero digits is m.) This implies, in particular, that for “most” n the system (1.2) has a non-trivial solution over any base field F_0. That is, if we fix $p \geq 3$ and let S_N be the set of integers $n \in \{1, \ldots, N\}$ such that the system (1.2) has a non-trivial solution over every base field F_0, then $|S_N|/N$ will rapidly converge to 1, as $N \to \infty$.

On the other hand, it is easy to see that the system (1.2) has no non-trivial solutions if $n = p^k$ for any $k \geq 1$ or $n = p^{k_1} + p^{k_2}$, where $k_1 > k_2 \geq 0$ and char(F_0) does not divide $p^{(k_1-k_2)(p-1)} + (-1)^p$. This way we recover most of [Re, Theorem 1.3]. In Section 13 we will extend this result as follows (for $p = 3$ only).

Theorem 1.5. Let E_n/F_n be the general field extension of degree n, over the base field $F_0 = \mathbb{Q}$. Suppose $n = 3^{k_1} + 3^{k_2} + 3^{k_3}$, where $k_1, k_2, k_3 \geq 0$ are distinct integers such that $k_1 + k_2 + k_3 \equiv 0$ or 1 (mod 3). Then for any finite field extension F'/F_n of degree prime to 3 there does not exist an element $0 \neq a \in E_n' := E_n \otimes_{F_n} F'$ such that $\text{tr}_{E'/F'}(a) = \text{tr}_{E'/F'}(a^3) = 0$.

This yields new examples, where the Hermite-Joubert Problem 1.1 has a negative answer in the classical setting (i.e., for $p = 3$ and $F_0 = \mathbb{Q}$). The smallest of these are $n = 13 = 3^2 + 3^1 + 3^0$, $n = 31 = 3^3 + 3^1 + 3^0$, and $n = 39 = 3^3 + 3^2 + 3^1$. We conjecture that Theorem 1.5 remains valid for all triples k_1, k_2, k_3 of distinct non-negative integers; see Conjecture 14.1. Some evidence in support of this conjecture is presented in Section 14. In particular, we show that the Hermite-Joubert Problem 1.1 (again, for $p = 3$ and $F_0 = \mathbb{Q}$) has a negative answer in the case, where $n = 37 = 3^3 + 3^2 + 3^0$, which is not covered by Theorem 1.5.

Remark 1.6. Our approach to the Hermite-Joubert Problem 1.1 in this paper is to subdivide it into two parts: the Local Hermite-Joubert Problem, and the rest. In the language of [Re2, Section 5], the Local Hermite-Joubert Problem is a Type 1 problem. The present paper is devoted to solving this Type 1 problem. In those cases, where the Local Hermite-Joubert Problem has a negative solution, so does the original Hermite-Joubert Problem 1.1 (e.g., as in Theorem 1.5).

In those cases, where the Local Hermite-Joubert Problem has a positive solution, the original Hermite-Joubert Problem becomes a “Type 2 question”. This question remains open, except in a few special cases, such as the case considered in Section 10, where $p = 2$, or the cases studied by Hermite and Joubert, where $p = 3$ and $n = 5$ or 6.

Many questions concerning algebraic objects over fields F, can be subdivided into two parts in a similar manner: a Type 1 problem, where F is assumed to be a p-closed field for some prime p, and a Type 2 problem (the rest, in those cases, where the Type 1 problem has a positive solution). Existing techniques are often effective in addressing Type 1 problems but Type 2 problems tend to be out of reach, except in a few special cases. For a discussion of this phenomenon and numerous examples, see [Re2, Section 5]. For further comments and remarks on Theorems 1.3 and 1.4, see Section 9.
2. Geometry of the hypersurfaces $X_{n,p}$ and $Y_{n,p}$

In this section we will prove some simple geometric properties of the hypersurfaces

$$X_{n,p} := \{(x_1 : \ldots : x_n) \mid x_1^p + \ldots + x_n^p = 0\} \subset \mathbb{P}^{n-1}$$

and

$$Y_{n,p} := \{(x_1 : \ldots : x_n) \mid x_1 + \ldots + x_n = x_1^p + \ldots + x_n^p = 0\} \subset \mathbb{P}^{n-2},$$

defined over the base field F_0.

Recall that a closed subvariety V of projective space is called a cone over a point $c \in V$ if V contains the line through c and c' for every $c \neq c' \in V$. We will say that V is a cone if it is a cone over one of its points.

Let Δ_n be the union of the “diagonal” hyperplanes $x_i = x_j$, over all $1 \leq i < j \leq n$.

Lemma 2.1. Assume $\text{char}(F_0) \neq p$. Then

(a) $X_{n,p}$ is smooth.

(b) The singular locus of $Y_{n,p}$ is $Y_{n,p} \cap \{(x_1 : \ldots : x_n) \mid x_1^{p-1} = \ldots = x_n^{p-1}\}$.

(c) $X_{n,p}$ is absolutely irreducible if $n \geq 3$.

(d) $Y_{n,p}$ is absolutely irreducible if $n \geq 5$.

(e) $X_{n,p}$ is not contained in Δ_n for any $n \geq 3$.

(f) $Y_{n,p}$ is not contained in Δ_n, if $n \geq 3$ and $(\text{char}(F_0), p, n) \neq (2, 3, 3), (2, 3, 4)$ or $(3, 2, 3)$.

(g) Let $(1 : \ldots : 1) \neq c \in Y_{n,p}$. Then $Y_{n,p}$ is not a cone over c.

(h) $Y_{n,p}$ is not a cone if $p > 2$ and $\text{char}(F_0) \neq 2$.

Proof. In order to prove the lemma we may, without loss of generality, pass to the algebraic closure of F_0, i.e., assume that F_0 is algebraically closed.

(a) and (b) readily follow from the Jacobian criterion.

(c) Assume the contrary. Then $X_{n,p}$ has at least two irreducible components, X_1 and X_2. Since $X_{n,p}$ is a hypersurface in \mathbb{P}^{n-1}, $\dim(X_1) = \dim(X_2) = n - 2$, and $\dim(X_1 \cap X_2) = n - 3$. Since we are assuming that $n \geq 3$, this implies that $X_1 \cap X_2 \neq \emptyset$. On the other hand, every point of $X_1 \cap X_2$ is singular in X, contradicting (a).

(d) Assume the contrary: $Y_{n,p}$ has at least two irreducible components, Y_1 and Y_2. Arguing as in (c), we see that $Y_1 \cap Y_2$ is a closed subvariety of the singular locus of Y, and $\dim(Y_1 \cap Y_2) = n - 4$. On the other hand, by part (b), the singular locus of Y is 0-dimensional. Thus $n - 4 \leq 0$, as desired.

(e) Assume the contrary: $X_{n,p} \subset \Delta_n$. On the other hand, Δ_n is the union of the $H_{ij} \subset \mathbb{P}^{n-1}$ given by $x_i = x_j$, where $i \neq j$ and $1 \leq i, j \leq n$. Since $X_{n,p}$ is irreducible by part (c), it is contained in one of these hyperplanes. Since $X_{n,p}$ is invariant under the action of S_n, it is contained in every hyperplane H_{ij}. That is,

$$X_{n,p} \subset \bigcap_{1 \leq i < j \leq n} H_{ij} = \{(1 : \ldots : 1)\},$$

which is impossible, since $\dim(X_{n,p}) = n - 2 \geq 1$.

(f) First assume \(n \geq 5 \). Here \(Y_{n,p} \) is irreducible by part (d), and the same argument as in part (e) shows that

\[
Y_{n,p} \subset \bigcap_{1 \leq i < j \leq n} H_{ij} = \{(1 : \ldots : 1)\},
\]

contradicting \(\dim(Y_{n,p}) = n - 3 \geq 2 \).

In the remaining cases, where \(n = 3 \) or \(4 \), but \(\text{char}(F_0), p, n \neq (2, 3, 3), (2, 3, 4) \) or \((3, 2, 3) \), we will exhibit a point \(y \in Y_{n,p} \) which does not lie in \(\Delta_n \).

If \(n = 4 \) and \(\text{char}(F_0) \neq 2 \), we can take \(y := (1 : \zeta_4 : \zeta_4^2) \). Here \(\zeta_4 \in F_0 \) is a primitive 4th root of unity. (Recall that we are assuming \(F_0 \) to be algebraically closed.) If \(\text{char}(F_0) = 2 \) but \(p \neq 3 \), set \(y := (1 : \zeta_3 : \zeta_3^2 : 0) \). This covers all pairs \(\text{char}(F_0), p \), except for \((2, 3) \). (Recall that we are assuming that \(\text{char}(F_0) \neq p \) throughout.)

Now suppose \(n = 3 \). If \(\text{char}(F_0) \neq 2 \) and \(p \neq 2 \), then we can take \(y := (1 : -1 : 0) \). If \(\text{char}(F_0) \neq 3 \) and \(p \neq 3 \), set \(y := (1 : \zeta_3 : \zeta_3^2) \). This covers all pairs \(\text{char}(F_0), p \), except for \((2, 3) \) and \((3, 2) \). (Once again, we are assuming that \(\text{char}(F_0) \neq p \).

(g) Assume the contrary. Since \(S_n \) acts on \(Y_{n,p} \) by permuting coordinates, \(Y_{n,p} \) is a cone over \(g \cdot c \) for every \(g \in S_n \). Now it is easy to see that \(Y_{n,p} \) contains the linear span of \(\{g \cdot c | g \in S_n\} \). Denote this linear span by \(L \). Then \(L \) is an \(S_n \)-invariant linear subspace of \(\mathbb{P}^{n-2} \). If \(\text{char}(F_0) \) does not divide \(n \), then the \(S_n \)-representation on \(F_0^{n-1} \) is irreducible. Hence, the only \(S_n \)-invariant subspace of \(\mathbb{P}^{n-2} \) is \(\mathbb{P}^{n-2} \) itself. Thus \(\mathbb{P}^{n-2} = L \subset Y_{n,p} \), a contradiction. If \(\text{char}(F_0) \) divides \(n \), then the only other possibility is \(L = \{(1 : 1 : \ldots : 1)\} \). This is ruled out by our assumption that \(c \neq (1 : \ldots : 1) \).

(h) Assume \(Y_{n,p} \) is a cone over some point \(c \in Y_{n,p} \). By part (d), \(c = (1 : \ldots : 1)^1 \). We want to show that if \(p > 2 \) and \(\text{char}(F_0) \neq 2 \) then \(Y_{n,p} \) is not a cone over \(c = (1 : \ldots : 1) \). Assume the contrary: whenever \(Y_{n,p} \) contains a point \(y = (y_1 : \ldots : y_n) \), it contains the entire line through \(c \) and \(y \). That is,

\[
(1 + ty_1)^p + \ldots + (1 + ty_n)^p = 0
\]
as a polynomial in \(t \). In particular, \(p(y_1^{p-1} + \ldots + y_n^{p-1}) \), which is the coefficient of \(t^{p-1} \) in this polynomial, should vanish for every \(y = (y_1 : \ldots : y_n) \in Y_{n,p} \). Set \(y := (-1 : 1 : 0 : \ldots : 0) \). Note that \(y \in Y_{n,p} \), because \(p > 2 \). For this \(y \), \(p(y_1^{p-1} + \ldots + y_n^{p-1}) = 0 \), reduces to \(2p = 0 \), contradicting our assumptions that \(\text{char}(F_0) \neq 2 \) or \(p \).

\[\square \]

3. Proof of Theorem 1.3: \((1) \implies (2) \)

Recall that a field \(F \) is called a \(p \)-field if the degree of every finite field extension of \(L \) is a power of \(p \). For every field \(F \), there exists an algebraic extension \(F \subset F^{(p)} \), such that \(F^{(p)} \) is \(p \)-closed field and, for every finite subextension \(F \subset F' \subset F^{(p)} \), the degree \([F' : F]\) is prime to \(p \). The field \(F^{(p)} \) satisfying these conditions is unique up to \(F \)-isomorphism. We will refer to it as a \(p \)-closure of \(F \). For details, see [EKM, Proposition 101.16].

Lemma 3.1. Let \(E/F \) be an étale algebra of degree \(n \). Then

\[\text{The reader should keep in mind that the subsequent argument is only needed in the case where char}(F_0) \text{ divides } n. \] Otherwise the point \((1 : \ldots : 1) \) does not lie on \(Y_{n,p} \), and part (h) follows from part (g).
(a) every element \(a \in E \otimes_F F^{(p)} \) lies in the image of the natural map
\[
\phi: E \otimes_F F' \hookrightarrow E \otimes_F F^{(p)}
\]
for some intermediate field \(F \subset F' \subset F^{(p)} \) (depending on \(a \)), such that \([F' : F]\) is finite (and thus automatically prime to \(p \)).

(b) \(x \in E' := E \otimes_F F' \) generates \(E' \) over \(F' \) (i.e., \(E' := F'[x] \)) if and only if \(\phi(x) \) generates \(E \otimes_F F^{(p)} \) over \(F^{(p)} \).

Proof. (a) Let \(b_1, \ldots, b_n \) be a basis of \(E \), viewed as an \(F \)-vector space. Then
\[
a = f_1(b_1 \otimes 1) + \ldots + f_n(b_n \otimes 1)
\]
lies in \(E \otimes_F F' \) for some \(f_1, \ldots, f_n \in F^{(p)} \), and we can take \(F' = F(f_1, \ldots, f_n) \).

(b) Working in the basis \(b_1 \otimes 1, \ldots, b_n \otimes 1 \), one readily checks that \(1, x, \ldots, x^{n-1} \) are linearly dependent over \(F' \) if and only if \(1, \phi(x), \ldots, \phi(x)^{n-1} \) are linearly dependent over \(F^{(p)} \). \(\square \)

We are now ready to prove the implication \((1) \implies (2)\) of Theorem 1.3. Applying \((1)\) to the étale algebra \(E_n \otimes_{F_n} F_n^{(p)} / F_n^{(p)} \) we see that there exists an element \(a \in E_n \otimes_{F_n} F_n^{(p)} \) such that \(\text{tr}(a^p) = 0 \). By Lemma 3.1(a), this element descends to \(E_n \otimes_{F_n} F' \) for some intermediate field \(F \subset F' \subset F^{(p)} \) such that \([F' : F]\) is finite (and hence, prime to \(p \)). \(\square \)

Remark 3.2. Suppose \(\phi(a') = a \). By Lemma 3.1(b), if \(a \) generates \(E_n \otimes_{F_n} F_n^{(p)} \) as an algebra over \(F^{(p)} \), then \(a' \) generates \(E_n \otimes_{F_n} F' \) over \(F' \).

4. Proof of Theorem 1.3: \((2) \implies (3)\)

Choose \(F' \) and \(a \) as in \((2)\), and let \(d := [F' : F] \). Then \(L' := L_n \otimes_{F_n} F' \) is an \(S_n \)-Galois algebra over \(F' \) and \(E' := (L')^{S_n-1} \) is an étale algebra of degree \(n \) over \(F' \).

Let \(Z \) be birational model for the \(S_n \)-Galois algebra \(L' \), i.e., an \(F_0 \)-variety with a \(S_n \)-action, whose \(F_0 \)-algebra of rational functions \(F_0(Z) \) is \(S_n \)-equivariantly isomorphic to \(L' \). (Note that \(Z \) is not necessarily irreducible. If \(L' \) is the direct product of \(r \) field extensions of \(F' \), then \(Z \) has \(r \) irreducible components.) The \(S_n \)-equivariant inclusion
\[
L_n \hookrightarrow L' := L_n \otimes_{F_n} F'
\]
gives rise to a dominant \(S_n \)-equivariant rational map \(Z \dashrightarrow \mathbb{A}^n \) of degree \(d = [F' : F] \).

Now the element \(a \) gives rise to a \(S_n \)-equivariant rational map \(f_a : Z \dashrightarrow \mathbb{P}^{n-1} \) defined as follows. Choose representatives \(h_1, \ldots, h_n \) of the left cosets of \(S_{n-1} \) in \(S_n \), so that \(h_i(1) = i \), and set
\[
f_a : Z \dashrightarrow \mathbb{P}^{n-1}, \quad z \mapsto (h_1(a)(z), \ldots, h_n(a)(z)).
\]
Note that \(h_1(a) = a, h_2(a), \ldots, h_n(a) \) are the conjugates of \(a \) in \(L' \). Since \(a \in E' := (L')^{S_{n-1}} \), \(h_i(a) \in L' \) depends only on the coset \(h_i S_{n-1} \) (i.e., only on \(i \)) and not on the particular choice of \(h_i \) in this coset. Moreover, \(h_1(a)^p + \ldots + h_n(a)^p = \text{tr}_{L'/F'}(a^p) = 0 \), so
the image of \(f_a \) lies in the hypersurface \(X_{n,p} \subset \mathbb{P}^{n-1} \), given by \(x_1^p + \ldots + x_n^p = 0 \), as in Section 2. In summary, we have the following diagram of \(S_n \)-equivariant rational maps:

\[
\begin{array}{ccc}
\mathbb{Z} & \overset{\text{generically } d:1\text{}}{\longrightarrow} & X_{n,p} \subset \mathbb{P}^{n-1} \\
\mathbb{A}^n \\
\end{array}
\]

(4.1)

Note that since \(Z \) is only defined up to an \(S_n \)-equivariant birational isomorphism, we may assume without loss of generality that \(Z \) is projective.

Now consider the abelian subgroup

\[A := (\mathbb{Z}/p\mathbb{Z})^{k_1} \times \ldots \times (\mathbb{Z}/p\mathbb{Z})^{k_m} \]

of \(S_n \). Recall from the statement of Theorem 1.3 that \(n := p^{k_1} + \ldots + p^{k_m} \) is the base \(p \) presentation of \(n \). We view \(A \) as a subgroup of \(S_n \) by embedding each factor \((\mathbb{Z}/p\mathbb{Z})^{k_i}\) into \(S_{p^{k_i}} \) via the regular representation. We now observe that that the origin is a smooth \(A \)-fixed \(F_0 \)-point in \(\mathbb{A}^n \). (In fact, this point is fixed by all of \(S_n \).) Hence, by the “going up” theorem of J. Kollár and E. Szabó [RY1, Proposition A.2], \(X_{n,p} \) also has an \(A \)-fixed \(F_0 \)-point\(^2\). In order to complete the proof of the implication (2) \(\implies \) (3) of Theorem 1.3, it remains to establish the following lemma.

Lemma 4.1. \(X_{n,p} \) has an \(A \)-fixed point defined over \(F_0 \) if and only if equation (1.1) has a non-trivial solution in \(\mathbb{P}^{n-1}(F_0) \).

Proof. An \(A \)-fixed point of \(\mathbb{P}^{n-1} \) is the same thing as a 1-dimensional \(A \)-invariant linear subspace of \(\mathbb{A}^n \). To find all possible 1-dimensional \(A \)-invariant linear subspaces, we will decompose the natural representation of \(A \) on \(F_0^n \) as a direct sum of irreducibles. First decompose \(F_0^n \) as a direct sum of \(A \)-invariant subspaces

\[F_0^n = F_0^{p^{k_1}} \oplus \ldots \oplus F_0^{p^{k_m}}, \]

where \(A \) acts on \(F_0^{p^{k_i}} \) by composing the natural projection \(A \rightarrow (\mathbb{Z}/p\mathbb{Z})^{k_i} \) with the regular representation of \((\mathbb{Z}/p\mathbb{Z})^{k_i}\). It is natural to label the coordinates of \(F_0^{p^{k_i}} \) by the elements \(g_1, \ldots, g_{p^{k_i}} \) of \((\mathbb{Z}/p\mathbb{Z})^{k_i}\), rather than by the numbers \(1, 2, \ldots, p^{k_i} \). In this notation, \(F_0^{p^{k_i}} \) decomposes as a direct product of 1-dimensional invariant subspaces \(\text{Span}_{F_0}(R_{\chi}) \), one for each character \(\chi: (\mathbb{Z}/p\mathbb{Z})^{k_i} \rightarrow F_0^* \), where \(R_{\chi} = (\chi(g_1), \ldots, \chi(g_{p^{k_i}})) \). Note that since we are assuming that \(\zeta_p \in F_0 \), every character \(\chi \) and every vector \(R_{\chi} \) are defined over \(F_0 \). We conclude that the irreducible decomposition of the natural representation of \(A \subset S_n \) on \(F_0^n \) is as follows:

\[
F_0^n = V_0 \oplus \left(\bigoplus_{\chi_1} \text{Span}_{F_0}(R_{\chi_1}, 0, \ldots, 0) \right) \oplus \ldots \oplus \left(\bigoplus_{\chi_m} \text{Span}_{F_0}(0, \ldots, 0, R_{\chi_m}) \right),
\]

(4.2)

where \(\chi_i \) ranges over the non-trivial characters of \((\mathbb{Z}/p\mathbb{Z})^{k_i} \rightarrow F_0^* \). Here

\[V_0 := \{(x_1, \ldots, x_1, x_2, \ldots, x_2, \ldots, x_m, \ldots, x_m) \mid \text{each } x_i \in F_0 \text{ repeats } p^{k_i} \text{ times}\} \]

\(^2\)Note that [RY1, Proposition A.2] assumes \(F_0 \) is algebraically closed. However, in the case where \(A \) is a finite abelian group of exponent \(p \), the proof only requires that \(\zeta_p \in F_0 \); see [RY1, Remark A.7].
is an m-dimensional subspace of F^n_0, where A acts trivially. On the other hand, A acts on the 1-dimensional subspace $\text{Span}_{F_0}(0, \ldots, 0, R_{\chi_i}, 0, \ldots, 0)$ by the character $A \rightarrow (\mathbb{Z}/p\mathbb{Z})^{k_i} \xrightarrow{\chi_i} F^n_0$, so the 1-dimensional summands in the sum (4.2) are pairwise non-isomorphic. We conclude that the A-fixed points of \mathbb{P}^{n-1} are either of the form

\[(y_1 : \ldots : y_1 : y_2 : \ldots : y_2 : \ldots : y_m : \ldots : y_m) \in \mathbb{P}(V_0)\]

for some $(y_1 : \ldots : y_m) \in \mathbb{P}^{n-1}$ or of the form

\[(0 : \ldots : 0 : R_{\chi_i} : 0 : \ldots : 0)\]

for some non-trivial character $\chi_i : (\mathbb{Z}/p\mathbb{Z})^{k_i} \rightarrow F^n_0$.

A point of \mathbb{P}^{n-1} of the form (4.4) has exactly p^{k_i} non-zero coordinates, and each of these non-zero coordinates is a pth root of unity. Hence the sum of the pth powers of the coordinates of this point is p^{k_i}, which is non-zero in F_0. Thus no A-fixed point of \mathbb{P}^{n-1} of the form (4.4) lies on $X_{n,p}$. We conclude that every A-fixed point of $X_{n,p}$ is necessarily of the form (4.3). That is, $X_{n,p}$ has an A-fixed point defined over F_0 if and only if $X_{n,p}$ has an F_0-point of the form (4.3) or, equivalently, if and only if equation (1.1) has a solution in $\mathbb{P}^{m-1}(F_0)$. This completes the proof of Lemma 4.1 and thus of the implication (2) \implies (3) of Theorem 1.3. \qed

5. Proof of Theorem 1.3: (3) \implies (1)

In this section we will prove the following

Proposition 5.1. Let p be a prime, $n \geq 1$ be a positive integer, and $n = p^{k_1} + \cdots + p^{k_m}$ be the base p presentation of n.

Suppose that F is a p-closed field. Then every n-dimensional étale algebra E/F can be written as $E \simeq E_1 \times \cdots \times E_m$, where each E_i is an étale algebra of degree p^{k_i} over F.

The implication (3) \implies (1) is an immediate consequence of this proposition. Indeed, assume that (3) holds. That is, there exists $y = (y_1 : \ldots : y_m) \in \mathbb{P}^{m-1}(F_0)$ such that $p^{k_1}y_1^p + \cdots + p^{k_m}y_m^p = 0$. Let F be a p-closed field and E/F be an étale algebra of degree n. By Proposition 5.1 we may assume that $E = E_1 \times \cdots \times E_m$, where E_i is an étale algebra of degree p^{k_i} over F. Now set $a := (y_1E_1, \ldots, y_mE_m) \in E$. Then

$$\text{tr}_{E/F}(a^p) = \text{tr}_{E_1/F}(a^p) + \cdots + \text{tr}_{E_m/F}(a^p) = p^{m_1}y_1^p + \cdots + p^{m_k}y_m^p = 0,$$

as desired.

It thus remains to prove Proposition 5.1. Let $E = F_1 \times \cdots \times F_r$, where each F_i/F is a field extension of finite degree. Since F is a p-closed field, $[F_i : F] = p^{\mu_i}$ for some integer $\mu_i \geq 0$. We want to arrange the fields F_1, \ldots, F_r into non-overlapping groups, G_1, \ldots, G_m so that $E_i := \prod_{F_j \in G_i} F_j$ is an étale algebra of degree p^{k_i} over F. Clearly, the specific fields F_1, \ldots, F_r are not important in this context. We are simply rearranging the integers p^{m_1}, \ldots, p^{m_k} into m non-overlapping groups, so that the sum of the integers in group i is p^{k_i}. This allows us to restate Proposition 5.1 in a more elementary way, as Lemma 5.2 below. We begin by recalling some definitions.

A partition $\lambda = [\lambda_1, \ldots, \lambda_s]$ of n is an unordered collection of positive integers $\lambda_1, \ldots, \lambda_r$ such that $\lambda_1 + \cdots + \lambda_r = n$. There is a natural partial order on the set of partitions: $\mu = [\mu_1, \ldots, \mu_r] \preceq \lambda = [\lambda_1, \ldots, \lambda_s]$ if μ is obtained from λ by partitioning each of the
numbers \(\lambda_1, \ldots, \lambda_n \). Equivalently, \(\mu \preceq \lambda \) if \(\mu_1, \ldots, \mu_t \) can be arranged into \(s \) disjoint groups, so that the sum of the numbers in group \(i \) is \(\lambda_i \). For example, \([3, 2, 1] \preceq [3, 3]\) and \([3, 2, 1] \preceq [4, 2]\) but \([3, 3]\) and \([4, 2]\) are not compatible in this partial order.

Suppose \(p \) is a prime. We say that a partition \(\lambda = [\lambda_1, \ldots, \lambda_s] \) of \(n \) is a \(p \)-partition if each \(\lambda_i \) is a power of \(p \). Every integer \(n \geq 1 \) has a unique \(p \)-partition, \([p^{k_1}, \ldots, p^{k_m}]\), where each \(p^k \) occurs at most \(p-1 \) times. We shall refer to this partition as the base \(p \)-partition of \(n \) and will denote it by \([n]_p\). Using this terminology, Proposition 5.1 reduces to the following lemma.

Lemma 5.2. Let \(\mu = [\mu_1, \ldots, \mu_r] \) be a \(p \)-partition of \(n \). Then \(\mu \preceq [n]_p \).

Proof. Let \(\mathcal{P} \) be the set of all \(p \)-partitions of \(n \) that are \(\succeq \mu \), and let \(\lambda = [\lambda_1, \ldots, \lambda_s] \) be a maximal element of \(\mathcal{P} \). Note that a maximal element exists because \(\mathcal{P} \) is non-empty (\(\mu \in \mathcal{P} \)) and has finitely many elements. We claim that no prime power \(p^i \) occurs in \(\lambda \) more than \(p-1 \) times. Since \([n]_p\) is the unique \(p \)-partition of \(n \) with this property, the claim implies that \(\lambda = [n]_p \), and the lemma follows.

To prove the claim, assume the contrary, say \(\lambda_1 = \cdots = \lambda_p = p^i \). Then
\[
\lambda = [p^{i}, \ldots, p^{i}, \lambda_{p+1}, \ldots, \lambda_r] < [p^{i+1}, \lambda_{p+1}, \ldots, \lambda_r],
\]
contradicting the maximality of \(\lambda \). This proves the claim, and thus Lemma 5.2, Proposition 5.1 and the implication (3) \(\implies \) (1) of Theorem 1.3.

6. Proof of Theorem 1.4

The proof of Theorem 1.4 is largely similar to the proof of Theorem 1.3. We will outline the necessary modifications below.

Once again, the implication (1) \(\implies \) (2) readily follows from Lemma 3.1(b).

(2) \(\implies \) (3). Assumption (2) gives rise to a diagram
\[
\begin{array}{ccc}
Z & \xrightarrow{f_a} & Y_{n,p} \\
\downarrow \text{generically d:1} & & \downarrow \text{\(\mathbb{P}^{n-1} \)} \\
\mathbb{A}^n & \xrightarrow{\mu} & Y_{n,p} \subseteq \mathbb{P}^{n-1}
\end{array}
\]
of \(S_n \)-equivariant dominant rational maps. Here \(d = [F' : F_n] \) is prime to \(p \). The only difference, compared to (4.1), is that we have replaced \(X_{n,p} \) by \(Y_{n,p} \). The “going up theorem” of theorem of Kollár and Szabó tells us that \(Y_{n,p} \) has an \(A \)-fixed point defined over \(F_0 \). Here
\[
A := (\mathbb{Z}/p\mathbb{Z})^{k_1} \times \cdots \times (\mathbb{Z}/p\mathbb{Z})^{k_m} \subset S_n,
\]
as in Section 4. As we saw in the proof of Lemma 4.1, every \(A \)-fixed point of \(X_{n,p} \) (and hence, of \(Y_{n,p} \)) defined over \(F_0 \) is of the form
\[
(y_1 : \ldots : y_1 : y_2 : \ldots : y_2 : \ldots : y_m : \ldots : y_m)
\]
for some \((y_1 : \ldots : y_m) \in \mathbb{P}^{m-1}(F_0) \). Thus a point of this form has to lie on \(Y_{n,p} \).

Equivalently, the system (1.2) has a non-trivial solution over \(F_0 \), as desired.

(3) \(\implies \) (1): Let \(E/F \) be an étale algebra of degree \(n \), such that \(F_0 \subseteq F \) and \(F \) is a \(p \)-closed field. By Proposition 5.1 \(E \simeq E_1 \times \cdots \times E_m \), where each \(E_i \) is an étale algebra.
of degree p^k over F. Here $n = p^{k_1} + \cdots + p^{k_m}$ is the base p expansion of n, as in the statement of Theorem 1.4. By (3), there exists a point $y = (y_1 : \ldots : y_m) \in \mathbb{P}^{m-1}(F_0)$ such that

\[
\begin{align*}
&\begin{cases}
p^{k_1}y_1 + \cdots + p^{k_m}y_m = 0 \\
p^{k_1}y_1^p + \cdots + p^{k_m}y_m^p = 0
\end{cases}
\end{align*}
\]

Set

\[
a := (y_1 1_{E_1}, \ldots, y_m 1_{E_m}) \in E.
\]

Then

\[
\text{tr}_{E/F}(a) = \text{tr}_{E_1/F}(a) + \cdots + \text{tr}_{E_m/F}(a) = p^{m_1}y_1 + \cdots + p^{m_k}y_m = 0
\]

and

\[
\text{tr}_{E/F}(a^p) = \text{tr}_{E_1/F}(a^p) + \cdots + \text{tr}_{E_m/F}(a^p) = p^{m_1}y_1^p + \cdots + p^{m_k}y_m^p = 0,
\]

as desired. \hfill \Box

7. Density of rational points on hypersurfaces

Let F be a p-closed field of characteristic $\neq p$, and X be a smooth irreducible variety over F. J.-L. Colliot-Thélène [CT, p. 360] showed that if X has an F-point, then F-points are dense in X. The following variant of this results will play a key role in the next section.

Proposition 7.1. Let F be a p-closed field of characteristic $\neq p$. Suppose $X \subset \mathbb{P}^l$ is a closed hypersurface of degree $\leq p$ defined over a p-closed field F of characteristic $\neq p$. Assume that X has an F-point c such that X is not a cone over c. Then F-points are dense in X.

Note that here we do not assume that X is either smooth or irreducible.

Proof. Case 1: X is a hypersurface of degree $d < p$. Note that effective zero cycles of degree d are dense in X (these can be obtained by intersecting X with lines defined over F in \mathbb{P}^l). Since F is a p-closed field, every effective zero cycle of degree $d < p$ splits over F, i.e., is a sum of d F-points. Consequently, F-points are dense in X.

Case 2: X is reducible over F, i.e. its irreducible components, X_1, \ldots, X_r, are defined over F and $r \geq 2$. Here each X_i is a hypersurface of degree $< p$. By Case 1, F-points are dense in each X_i; hence, they are dense in X.

Case 3: X is irreducible over F but reducible over \overline{F}. Note that since F is a p-closed field, and char(F) $\neq p$, F is perfect. Hence, the irreducible components X_1, \ldots, X_r of X are transitively permuted by the Galois group Gal(\overline{F}/F), which is a pro-p group. Thus $r \geq 2$ is a power of p. Moreover, since deg(X) = deg(X_1) + \cdots + deg(X_r) $\leq p$, we conclude that $r = p$ and deg(X_1) = \cdots = deg(X_p) = 1. In other words, X is a union of the hyperplanes X_1, \ldots, X_p. Now observe that $c \in X(F)$ is fixed by Gal(\overline{F}/F). After relabeling the components, we may assume that $c \in X_1$. Translating X_1 by Gal(\overline{F}/F), we see that c lies on every translate of X_1, i.e., on every X_i for $i = 1, \ldots, r$. Since each X_i is a hyperplane, we conclude that X is a cone over c, contradicting our assumption.

Case 4: X is absolutely irreducible. Choose a hyperplane $H \simeq \mathbb{P}^{l-1}$ in \mathbb{P}^l such that H is defined over F and $c \not\in H$. Let $\pi: X - \{c\} \to H$ be projection from c. Since X is not a
cone over c, this map is dominant. In particular, there is a dense open subset $U \subset H$ such that π is finite over U. The preimage $\pi^{-1}(u)$ of any F-point $u \in U(F)$ is then an effective 0-cycle of degree $\leq p - 1$. Once again, every such 0-cycle splits over F, i.e., $\pi^{-1}(u)$ is a union of F-points. Taking the union of $\pi^{-1}(u)$, as u varies over $U(F)$, we obtain a dense set of F-points in X. \hfill\Box

If $p = 2$ or 3, then Proposition 7.1 remains true for all infinite fields F (not necessarily p-closed), under mild additional assumptions.

Lemma 7.2. (a) Let $X \subset \mathbb{P}^d$ be a hypersurface of degree 2 defined over a field F of characteristic $\neq 2$. Assume X has an F-point and X is not a cone. Then X is rational over F; in particular, F-points are dense in X.

(b) (J. Kollár) Let $X \subset \mathbb{P}^d$ be an absolutely irreducible cubic hypersurface of dimension ≥ 2 defined over a field F. Assume X has an F-point, and X is not a cone. If X is singular, assume also that $\text{char}(F) \neq 2$ or 3. Then X is unirational over F. In particular, if F is infinite, then F-points are dense in X.

Proof. (a) Suppose X is given by $q = 0$, where q is a quadratic form on F^{l+1}. Since X is not a cone, q is non-degenerate. Hence, X is irreducible (and smooth). The stereographic projection from a point $c \in X(F)$ to a hyperplane $H \subset \mathbb{P}^d$ defined over F and not passing through c, gives rise to a birational isomorphism between X and H.

(b) If X is smooth, see [Ko, Theorem 1.1]. If X is singular and F is perfect, see [Ko, Theorem 1.2]. Finally, if X is singular and F is an imperfect field of characteristic $\neq 2, 3$, see the remark after the statement of Theorem 1.2 on [Ko, p. 468]. \hfill\Box

8. Proof of Assertions (*) and (**)

In this section we complete the proofs of Theorems 1.3 and 1.4 by proving Assertions (*) and (**), respectively.

Given an étale algebra E/F of degree n, we define $X_{E/F,p}$ as the degree p hypersurface in $\mathbb{P}(E) = \mathbb{P}^{n-1}_F$, given by $\text{tr}_{E/F}(x^p) = 0$ and

$$Y_{E/F,p} := X_{E/F,p} \cap H,$$

where $H \simeq \mathbb{P}^{n-2}_F$ is the hyperplane $\text{tr}_{E/F}(x) = 0$ in $\mathbb{P}(E)$. Let $\Delta_{E/F}$ be the discriminant locus in $\mathbb{P}(E)$, i.e., the closed subvariety of $\mathbb{P}(E)$ defined by the condition $1, a, \ldots, a^{n-1}$ are linearly dependent over F. (Here $a \in E$.) Clearly, $X_{E/F,p}$, $Y_{E/F,p}$ and $\Delta_{E/F}$ are F-forms of the varieties $X_{n,p}$, $Y_{n,p}$ and Δ_n defined in Section 2.

Let us now focus on the proof of Assertion (*) of Theorem 1.3. Assume (3) holds. Our goal is to show that a can be chosen so that (i) $E = F[a]$ in part (1), and (ii) $E' = F'[a]$ in part (2). In fact, only (i) needs to be proved; (ii) follows from (i) by Remark 3.2. Thus assertion (*) can be restated as follows: if $X_{E/F,p}$ has an F-point, then $X_{E/F,p}$ has an F-point away from $\Delta_{E/F}$. By Lemma 2.1(e), $X_{n,p}$ is not contained in Δ_n; hence, $X_{E/F,p}$ is not contained in $\Delta_{E/F}$. Thus in order to prove Assertion (*) of Theorem 1.3, it suffices to establish the following lemma.

Lemma 8.1. Suppose p is a prime, F is a p-closed field, and E/F is an étale algebra of degree $n \geq 3$. If $X_{E/F,p}$ has an F-point, then F-points are dense in $X_{E/F,p}$.

Now observe that Lemma 8.1 is, in fact, a special case of Proposition 7.1. This completes the proof of Assertion (**) of Theorem 1.3.

Let us now turn our attention to proving Assertion (***) of Theorem 1.3. Since \(Y_{E/F,p} \) is an \(F \)-form of \(Y_{n,p} \), Lemma 2.1(f) tells us that under the assumptions of Theorem 1.4(**), \(Y_{E/F,p} \) is not contained in \(\Delta_{E/F} \). Assuming that condition (3) of Theorem 1.4 holds, we have constructed an \(F \)-point of \(Y_{E/F,p}(F) \); see (6.1). That is, (6.1) gives an \(F \)-point \(0 \neq a \in E \) whose image \([a]\) in \(\mathbb{P}(E) \) lies on \(Y_{E/F,p}(F) \). We claim that under the assumptions of Theorem 1.4(**), \(Y_{E/F} \) is not a cone over \([a]\).

Indeed, if condition (i) of Theorem 1.4(**) holds, i.e., \((y_1 : \ldots : y_m) \neq (1 : \ldots : 1)\) then formula (6.1) tells us that \(a \) is not a scalar (i.e., \(a \not\in F \cdot 1_E \)). If \(Y_{E/F,p} \) were a cone over \([a]\), then it would remain a cone over \([a]\) after passing to the algebraic closure \(\overline{F} \) of \(F \). When we pass from \(F \) to \(\overline{F} \), \(E \) becomes split, i.e., isomorphic to \(F^n \). If \(\mathbb{P}(E) \) reduces to \(\mathbb{P}(F^n) \cong \mathbb{P}^{n-1} \), \(Y_{E/F,p} \) reduces to \(Y_{n,p} \), and the condition that \(a \) is not a scalar in \(E \) translates into \([a] \neq (1 : \ldots : 1) \) in \(\mathbb{P}^{n-1} \). By Lemma 2.1(g), \(Y_{n,p} \) cannot be a cone over \([a]\), a contradiction. We conclude that \(Y_{E/F,p} \) is not a cone over \([a]\), as claimed.

On the other hand, if condition (ii) of Theorem 1.4(**) holds, i.e., if \(p > 2 \) and \(\text{char}(F_0) \neq 2 \), then by Lemma 2.1(h) \(Y_{n,p} \) is not a cone over any of its points, and hence, neither is \(Y_{E/F,p} \). This proves the claim.

Thus in order to prove Assertion (**), it suffices to establish the following lemma.

Lemma 8.2. Suppose \(p \) is a prime, \(F \) is a \(p \)-closed field, and \(E/F \) is an étale algebra of degree \(n \geq 3 \). If \(Y_{E/F,p} \) has an \(F \)-point, and \(Y_{E/F,p} \) is not a cone over this point, then \(F \)-points are dense in \(Y_{E/F,p} \).

Once again, Lemma 8.2 is a special case of Proposition 7.1. This completes the proof of Assertion (***) of Theorem 1.4.

Remark 8.3. Since \(X_{n,p} \) is smooth and absolutely irreducible (see Lemma 2.1(a) and (c)), so is \(X_{E/F,p} \). Hence, we can deduce Lemma 8.1 directly from the result of Colliot-Thélène’s mentioned at the beginning of Section 7, without appealing to Proposition 7.1. We do need Proposition 7.1 to deduce Lemma 8.2 though, since \(Y_{E/F,p} \) is not smooth in general; see Lemma 2.1(b).

9. Remarks on Theorems 1.3 and 1.4

Remark 9.1. The requirement that \(\text{char}(F_0) \neq p \) is harmless. In characteristic \(p \), \(\text{tr}(a^p) = \text{tr}(a)^p \). In this setting the Hermite-Joubert Problem 1.1 amounts to finding an element \(0 \neq a \in E \) of trace zero, which is always possible (assuming \(n \geq 2 \)).

Remark 9.2. Condition (1) in either theorem holds for \(F_0 \) if and only if it holds after we replace \(F_0 \) by \(F_0^{(p)} \) (or by any finite extension \(F_1 \) such that \([F_1 : F_0] \) is prime to \(p \)). In particular, if \(F_0 \) does not contain \(\zeta_p \), we are free to replace \(F \) by \(F(\zeta_p) \). Similarly for condition (2). Consequently, the assumption that \(\zeta_p \in F_0 \) in both theorems can be dropped if we ask that \(y_1, \ldots, y_m \) lie in \(F_0(\zeta_p) \), rather than \(F_0 \), in part (3).

Remark 9.3. As we pointed out after the statement of Theorem 1.4 in the Introduction, conditions (i) and (ii) are very mild. Nevertheless, these conditions cannot be dropped entirely.
To illustrate this point, we will consider the following example: \(n = 6 = 3^1 + 3^1, p = 3 \) and \(\text{char}(F_0) = 2 \). In this case the system (1.2) reduces to

\[
\begin{align*}
3y_1 + 3y_2 &= 0 \\
3y_1^3 + 3y_2^3 &= 0.
\end{align*}
\]

Conditions (1), (2) and (3) of Theorem 1.4 are satisfied in this example; we can take \(a = 1_F \) in part (1), \(F' := F_6 \) and \(a = 1_{F_6} \) in part (2), and \(y = (1 : 1) \) in part (3). On the other hand, it is shown in \([\text{Re}_3]\) that no element \(a \in E' - F' \) satisfies

\[
\text{tr}_{E'/F'}(a) = \text{tr}_{E'/F'}(a^3) = 0
\]

in part (2), for any finite extension \(F'/F_6 \) of degree prime to 3; see \([\text{Re}_3], \text{Theorem 2 and Remark (3) in Section 8}\). Thus we cannot choose \(F' \) and \(a \in E' \) in part (2), so that \(E' = F'[a] \). Note that conditions (i) and (ii) of Theorem 1.4(∗∗) both fail here. \(\square \)

Remark 9.4. Recall that the symmetric group \(S_n \) acts on

\[Y_{n,p} := \{(x_1, \ldots, x_n) \mid x_1 + \ldots + x_n = x_1^p + \ldots + x_n^p = 0\} \subset \mathbb{P}^{n-2} \]

by permuting the variables \(x_1, \ldots, x_n \). It turns out that the Hermite-Joubert Problem is related to versality of this actions. We will not use this connection in the present paper, but will state it and outline a proof in this remark, for the interested reader. For the definition of various types of versality for group actions on algebraic varieties, see \([\text{DR}, \text{Introduction}]\).

(a) The Hermite-Joubert Problem 1.1 has a positive solution if and only if the \(S_n \)-action on \(Y_{n,p} \) weakly versal.

(b) The Local Hermite-Joubert Problem 1.2 has a positive solution if and only if the \(S_n \)-action on \(Y_{n,p} \) is weakly \(p \)-versal.

Moreover, assume that \(Y_{n,p} \) is not a cone. (This is a mild assumption on \(n, p, \) and \(F_0 \); see Lemma 2.1(g) and (h).) Then

(c) “weakly \(p \)-versal” can be replaced by “\(p \)-versal” in part (b).

(d) Furthermore, if \(n \geq 5, p = 3 \) and \(\text{char}(F_0) \neq 2 \), then “weakly versal” can be replaced by “versal” in part (a).

To prove part (a), note that by \([\text{DR}, \text{Theorem 1.1}]\) the \(S_n \)-action on \(Y_{n,p} \) is weakly versal if and only if the twist \(Y_{n,p}' \) has an \(F \)-point for every field extension \(F/F_0 \) and every \(S_n \)-torsor \(\tau : T \to \text{Spec}(F) \). It is easy to see that \(Y_{n,p}' \) is precisely, \(Y_{E/F,p} \), where \(E/F \) is the étale algebra corresponding to \(\tau \). Thus the \(S_n \)-action on \(Y_{n,p} \) is weakly versal if and only if \(Y_{E/F,p} \) has an \(F \)-point for every field extension \(F/F_0 \) and every étale algebra \(E/F \), i.e., if and only if the Hermite-Joubert Problem 1.1 has a positive solution, as claimed. Part (b) is proved by a similar argument, with \([\text{DR}, \text{Lemma 8.2}]\) used in place of \([\text{DR}, \text{Theorem 1.1}]\). Part (c) is a consequence of Proposition 7.1. Part (d) is a consequence of Lemma 7.2(b). \(\square \)

10. The Hermite-Joubert problem for \(p = 2 \)

For \(p = 2 \), Theorems 1.3 and 1.4 can be strengthened to give the following answer to the Hermite-Joubert Problem 1.1.
Corollary 10.1. Let F_0 be a field of characteristic $\neq 2$, and $n = 2^{k_1} + \ldots + 2^{k_m} \geq 3$, where the exponents $k_1, \ldots, k_m \geq 0$ are distinct integers.

(a) Conditions (1), (2) and (3) of Theorem 1.3 (with $p = 2$) are equivalent to:

(4) For every field F containing F_0 and every n-dimensional étale algebra E/F, there exists an element $0 \neq a \in E$ such that $\text{tr}_{E/F}(a^2) = 0$.

(b) Moreover, if (4) holds, and F is an infinite field, then the element $a \in E$ in (4) can be chosen so that $E = F[a]$.

(c) Conditions (1), (2) and (3) of Theorem 1.4 (with $p = 2$) are equivalent to:

(4') For every field F containing F_0 and every n-dimensional étale algebra E/F, there exists an element $0 \neq a \in E$ such that $\text{tr}_{E/F}(a) = \text{tr}_{E/F}(a^2) = 0$.

(d) Moreover, if (4') holds, $\text{char}(F_0)$ does not divide n, and F is an infinite field, then the element $a \in E$ in (4') can be chosen so that $E = F[a]$.

Proof. By a theorem of Springer, a quadric hypersurface in \mathbb{P}^t defined over a field F of characteristic $\neq 2$, has an F-point if and only if it has an $F^{(2)}$-point; see, e.g., [Lam, Theorem VII.2.7] or [Pf, Theorem 6.1.12]. Applying this to the hypersurfaces $X_{E/F,2} \subset \mathbb{P}_F^{n-1}$ and $Y_{E/F,2} \subset \mathbb{P}_F^{n-2}$ given by $\text{tr}(x^2) = 0$ and $\text{tr}_{E/F}(x) = \text{tr}_{E/F}(x^2) = 0$, respectively, we see that (1) \iff (4) in part (a) and (1) \iff (4') in part (c).

Proof of part (b). We begin by establishing the following claim. Let E/F be an étale algebra of degree n. Assume $X_{E/F,2}$ has an F-point. Then F-points are dense in $X_{E/F,2}$.

Indeed, by Lemma 2.1(a), $X_{n,2}$ is a smooth quadric hypersurface in \mathbb{P}^{n-1}, and hence, so is $X_{E/F,2}$. By Lemma 7.2(a) the existence of an F-point on $X_{E/F,2}$ implies that $X_{E/F,2}$ is rational over F. Since we are assuming that F is infinite, F-points are dense in $X_{E/F,2}$. This proves the claim.

Now observe that by Lemma 2.1(e), $X_{n,2}$ is not contained in Δ_n and thus $X_{E/F,2}$ is not contained in the discriminant locus $\Delta_{E/F}$. The claim tells us that there exists an F-point of $X_{E/F,2}$ away from $\Delta_{E/F}$. This F-point is represented by an element $a \in E$ such that $\text{tr}_{E/F}(a^2) = 0$ and $F[a] = E$, as desired.

Finally, we turn to the proof of part (d). Since we are assuming that $\text{char}(F_0) \neq 2$ and does not divide n, Lemma 2.1(b) tells us that $Y_{n,2}$ is a smooth quadric hypersurface in \mathbb{P}^{n-2}, and hence, so is any of its twisted forms $Y_{E/F,2}$. Moreover, by Lemma 2.1(f), $Y_{n,2}$ is not contained in Δ_n and hence, $Y_{E/F,2}$ is not contained in $\Delta_{E/F}$.

Now, arguing as in the proof of part (b) above, we see that if (4') holds, then $Y_{E/F,2}$ is rational over F and hence, F-points are dense in $Y_{E/F,2}$ (recall that F is assumed to be an infinite field). In particular, there there exists an F-point of $Y_{E/F,2}$ away from the discriminant locus $\Delta_{E/F}$, and part (d) follows. This completes the proof of Corollary 10.1.

Remark 10.2. Suppose $p = 2$. Let us arrange the exponents k_1, \ldots, k_m in Corollary 10.1 so that k_1, \ldots, k_s are even and k_{s+1}, \ldots, k_m are odd. (Here k_1, \ldots, k_m are distinct non-negative integers; we do not require that $k_1 > \ldots > k_m$.) The quadratic form $2^{k_1}y_1^2 + \ldots + 2^{k_m}y_m^2$ is then equivalent to $q(z_1, \ldots, z_n) = z_1^2 + \ldots + z_s^2 + 2(z_{s+1}^2 + \ldots + z_m^2)$.

Condition (3) of Theorem 1.3 amounts to requiring q to be isotropic over F_0. Condition
(3) of Theorem 1.4 is equivalent to saying that q has an isotropic vector in the hyperplane given by
\begin{equation}
2^{k_1/2}z_1 + \ldots + 2^{k_s/2}z_s + 2^{(k_s+1)/2}z_1 + \ldots + 2^{(k_m-1)/2}z_m = 0
\end{equation}
in \mathbb{P}^{m-1}. Note that condition (3) of Theorem 1.3 fails if F_0 is formally real. On the other hand, condition (3) of Theorem 1.4 holds if the Witt index of q is ≥ 2. Indeed, in this case the quadric hypersurface in \mathbb{P}^{m-1} given by $q = 0$ has a line defined over F_0; see [Lam, Theorem II.4.3]. Intersecting this line with the hyperplane (10.1) we obtain a desired isotropic vector defined over F_0. \hfill \Box

11. The Hermite-Joubert problem for $p = 3$

Springer’s theorem has the following conjectural analogue for $p = 3$.

Conjecture 11.1. (J. W. S. Cassels, P. Swinnerton-Dyer [Co1, p. 267])

Let X be a cubic hypersurface in \mathbb{P}^d defined over a field F. If $X(F_1) \neq 0$ for some finite extension F_1/F and $[F_1:F]$ is prime to 3, then $X(F) \neq \emptyset$. In other words, if X has an $F^{(3)}$-point, then X has an F-point.

Remark 11.2. This long-standing conjecture remains largely open. To the best of our knowledge, the partial results proved in the 1976 paper of D. Coray [Co1] remain state of the art. One special case, where the conjecture is known (and easy to prove) is the following:

Let X be a cubic hypersurface in \mathbb{P}^d defined over a field F. If $[F_1:F] = 2$ and $X(F_1) \neq \emptyset$, then $X(F) \neq \emptyset$; see [Co1, Proposition 2.2].

Remark 11.3. If $p = 3$, then the assumption that $\zeta_p \in F_0$ in the statements of Theorems 1.3 and 1.4 can be dropped.

To prove this, let us assume that $\zeta_3 \not\in F_0$ and see what happens if we replace F_0 by $F_0(\zeta_3)$. As we explained in Remark 9.2, the validity of conditions (1) and (2) will not change. Since $[F_0(\zeta_3):F_0] \leq 2$, Remark 11.2 tells us that the validity of condition (3) will not change either. \hfill \Box

In view of Corollary 10.1 and Conjecture 11.1, it is natural to expect the following answer to the Hermite-Joubert Problem 1.1 for $p = 3$.

Conjecture 11.4. Let F_0 be a field of characteristic $\neq 3$, $n \geq 3$ be an integer, and $n = 3^{k_1} + \ldots + 3^{k_m}$ be the base 3 expansion of n.

(a) Conditions (1), (2) and (3) of Theorem 1.3 (with $p = 3$) are equivalent to:

(4) For every field F containing F_0 and every n-dimensional étale algebra E/F, there exists an element $0 \neq a \in E$ such that $\text{tr}_{E/F}(a^3) = 0$.

(b) Moreover, if (4) holds, $n \geq 4$, and F is an infinite field, then the element $a \in E$ in (4) can be chosen so that $E = F[a]$.

(c) Conditions (1), (2) and (3) of Theorem 1.4 (with $p = 3$) are equivalent to:

(4′) For every field F containing F_0 and every n-dimensional étale algebra E/F, there exists an element $0 \neq a \in E$ such that $\text{tr}_{E/F}(a) = \text{tr}_{E/F}(a^3) = 0$.

(d) Suppose \((4')\) holds, \(n \geq 5\), \(\text{char}(F_0) \neq 2\), and \(F\) is an infinite field. Then the element \(a\) in \((4')\) can be chosen so that \(E = F[a]\).

Proposition 11.5. Conjecture 11.4 follows from Conjecture 11.1.

Proof. Recall that by Remark 11.3, for \(p = 3\), Theorems 1.3 and 1.4 remain valid even if \(F_0\) does not contain \(\zeta_3\). The proof of the equivalences \((1) \iff (4)\) in part (a) and \((1) \iff (4')\) in part (c) is now exactly the same as in Corollary 10.1, with Conjecture 11.1 used in place of Springer’s theorem.

To prove part (b), let \(E/F\) be an étale algebra of degree \(n\). By (4), \(X_{E/F,3}\) is an \(E\)-point. By Lemma 2.1, \(X_{E/F,3}\) is a smooth absolutely irreducible cubic hypersurface of dimension \(n - 2 \geq 2\). Since it has an \(E\)-point, Lemma 7.2(b) tells us that \(X_{E/F,3}\) is unirational over \(E\). Since we are assuming that \(E\) is infinite, this implies that \(F\)-points are dense in \(X_{E/F,3}\). On the other hand, by Lemma 2.1(e), \(X_{n,3}\) is not contained in \(\Delta_n\). Hence, \(X_{E/F,3}\) is not contained in \(\Delta_{E/F}\). Therefore, we can find an \(E\)-point of \(X_{E/F,3}\) away from \(\Delta_{E/F}\), and part (b) follows.

We now turn to part (d). Since \(n \geq 5\), Lemma 2.1(f) tells us that \(Y_{n,3}\) is not contained in \(\Delta_n\). Hence, \(Y_{E/F,3}\) is not contained in \(\Delta_{E/F}\). By \((4')\), \(Y_{E/F,3}\) has an \(E\)-point. Thus it suffices to show that \(F\)-points are dense in \(Y_{E/F,3}\).

Since we are assuming that \(n \geq 5\), Lemma 2.1(e) tells us that \(Y_{n,3}\) is an absolutely irreducible cubic hypersurface of dimension \(\geq 2\), and hence, so is \(Y_{E/F,3}\). Moreover, since \(\text{char}(F_0) \neq 2\), \(Y_{n,3}\) is not a cone by Lemma 2.1(h). Hence, neither is \(Y_{E/F,3}\). Once again, by Lemma 7.2(b), the existence of an \(E\)-point on \(Y_{E/F,3}\) implies that \(Y_{E/F,3}\) is unirational. In particular, \(F\)-points are dense in \(Y_{E/F,3}\). This completes the proof of Proposition 11.5.

Remark 11.6. Let \(Z_{m,p}\) and \(W_{m,p}\) be the degree \(p\) hypersurfaces cut out by the equation \((1.1)\) and the system \((1.2)\) in \(\mathbb{P}^{m-1}\) and \(\mathbb{P}^{m-2}\), respectively.

If \(\zeta_p \in F_0\), it follows from Theorem 1.3 (respectively, Theorem 1.4) that \(Z_{m,p}\) (respectively, \(W_{m,p}\)) has an \(F_0\)-point if and only if it has an \(F_0^{(p)}\)-point. Indeed, as we noted in Remark 9.2, the validity of conditions \((1)\) and \((2)\) does not change when we replace \(F_0\) by \(F_0^{(p)}\). Hence, neither does the validity of \((3)\).

In particular, this shows that Conjecture 11.1 is true for the cubic hypersurfaces \(Z_{m,3}\) and \(W_{m,3}\) defined over \(F_0\). Note also that for \(p = 3\) the requirement that \(\zeta_3 \in F_0\) can be dropped; see Remark 11.3.

12. When are there solutions to \((1.1)\) and \((1.2)\)?

Lemma 12.1. Let \(F_0\) be a field of characteristic \(\neq p\). Equation \((1.1)\) has a solution \(y = (y_1, \ldots, y_m) \in \mathbb{P}^{m-1}(F_0)\) if one of the following conditions holds:

(a) \(\sqrt{-p^{k_i-k_j}}\) lies in \(F_0\), for some \(1 \leq i < j \leq m\).

(b) \(k_i \equiv k_j \pmod{p}\) for some \(1 \leq i < j \leq m\) and either \(p\) is odd or \(p = 2\) and \(\sqrt{-1} \in F_0\).

(c) \(m \geq p + 1\), and either \(p\) is odd or \(p = 2\) and \(\sqrt{-1} \in F_0\).

Proof. (a) Set \(y_i := 1\), \(y_j := \sqrt{-p^{k_i-k_j}}\), and \(y_h = 0\) for every \(h \neq i, j\). Then \(y = (y_1 : \ldots : y_m)\) is a solution to \((1.1)\).

(b) If \(k_i \equiv k_j \pmod{p}\), then \(\sqrt{-p^{k_i-k_j}} \in F_0\).
(c) If $m \geq p + 1$, then k_1, \ldots, k_m cannot all be distinct modulo p, and part (b) applies. □

We will now prove the converse to Lemma 12.1(b) in the case, where $F_0 = \mathbb{Q}(\zeta_p)$ and p is odd.

Proposition 12.2. Let p be an odd prime and $F_0 = \mathbb{Q}(\zeta_p)$. Then the following conditions are equivalent.

(a) Equation (1.1) has no solutions in $\mathbb{P}^{m-1}(F_0)$.
(b) The integers k_1, \ldots, k_m are distinct modulo p.

Proof. The implication (a) \implies (b) follows from Lemma 12.1(b).

(b) \implies (a): Assume $(y_1 : \ldots : y_m) \in \mathbb{P}^{m-1}(F_0)$ is a solution to (1.1), i.e.,

\[p^{k_1}y_1^p + \ldots + p^{k_m}y_m^p = 0 \]

The p-adic valuation $\nu_p: \mathbb{Q}^* \to \mathbb{Z}$ can be extended to $\nu_p: \mathbb{Q}(\zeta_p)^* \to \Gamma$, where Γ is a subgroup of \mathbb{Q} such that $[\Gamma : \mathbb{Z}] \leq p - 1$; see [Lang, Theorem XII.4.1 and Proposition XII.4.2]. In fact, we can take $\Gamma = \frac{1}{p} - 1$, but we will not need this in the sequel.

From (12.1) we see that

\[\nu_p(p^{k_i}y_i^p) = \nu_p(p^{k_j}y_j^p) \]

for some $1 \leq i < j \leq m$ such that $y_i, y_j \neq 0$. It remains to show that $k_i - k_j$ is divisible by p. Indeed, assume the contrary. Then $k_i + p\nu_p(y_i) = k_j + p\nu_p(y_j)$, and

\[\frac{k_i - k_j}{p} = \nu_p(y_j) - \nu_p(y_i) \in \Gamma. \]

Thus $[\Gamma : \mathbb{Z}] \geq [\frac{1}{p} - 1] : \mathbb{Z}] = p$, a contradiction. □

Lemma 12.3. Let F_0 be a field of characteristic $\neq p$. The system (1.2) has a solution in $\mathbb{P}^{m-1}(F_0)$ if one of the following conditions holds:

(a) p is odd and $k_i = k_j$ for some $i \neq j$,
(b) $\sqrt[p - 1]{-p^{k_i-k_j}}$ and $\sqrt[p - 1]{-p^{k_{i'}-k_{j'}}}$ both lie in F_0, for some 4-tuple of distinct integers i, j, i', j' between 1 and m,
(c) $m \geq p + 3$, and either p is odd or $p = 2$ and $\sqrt{-1} \in F_0$,
(d) $m \geq p + 2$ and char(F_0) > 0.

Proof. (a) Set $y_i := 1$, $y_j := -1$, and $y_h = 0$ for any $h \neq i, j$. Then $y = (y_1 : \ldots : y_m)$ is a solution to (1.2).

(b) The hypersurface $Z_{m,p} \subset \mathbb{P}^{m-1}$ given by $p^{k_1}y_1^p + \ldots + p^{k_m}y_m^p = 0$, contains the line through $y := (y_1 : \ldots : y_m)$ and $y' := (y_1' : \ldots : y_m')$, where $y_i := 1$, $y_j := \sqrt[p - 1]{-p^{k_i-k_j}}$ and $y_h = 0$ for every $h \neq i, j$, and similarly $y_i' := 1$, $y_j' := \sqrt[p - 1]{-p^{k_{i'}-k_{j'}}}$ and $y_h' = 0$ for every $h' \neq i', j'$. Intersecting this line with the hyperplane $p^{k_1}y_1 + \ldots + p^{k_m}y_m = 0$, we obtain a solution to (1.2).

(c) Assume $m \geq p + 3$. Then there exist $1 \leq i < j \leq m$ such that $k_i \equiv k_j (\text{mod } p)$. Since $m - 2 \geq p + 1$, after removing k_i and k_j from the sequence k_1, \ldots, k_m, we will find
two other distinct subscripts i' and j' such that $k_{i'} \equiv k_{j'} \pmod{p}$. The desired conclusion now follows from part (b).

(d) Let F be the prime subfield of F_0. By Chevalley's theorem F is a C_1-field; see [Pf, Theorem 5.2.1]. Note that the coefficients p^{k_i} of the system (1.2) all lie in F. Since we are assuming that $m - 1 > p$, the C_1 property of F guarantees that the system (1.2) has a solution in $\mathbb{P}^{m-2}(F_0)$ and hence, in $\mathbb{P}^{m-2}(F_0)$. \hfill \square

13. Proof of Theorem 1.5

By Theorem 1.4 it suffices to show that the system (1.2) has no non-trivial solutions in \mathbb{Q}. (Recall that by Remark 11.3, for $p = 3$, Theorem 1.4 is valid for $F_0 = \mathbb{Q}$, even though $\zeta_3 \not\in \mathbb{Q}$.)

We will say that two triples, (k_1, k_2, k_3) and $(k'_1, k'_2, k'_3) \in \mathbb{Z}^3$, are equivalent if

$$(k'_1, k'_2, k'_3) = (k_{\sigma(1)} + c, k_{\sigma(2)} + c, k_{\sigma(3)} + c),$$

for some $\sigma \in S_3$ and $c \in \mathbb{Z}$. For each triple of integers, (k_1, k_2, k_3) we would like to know whether or not the system

$$(13.1) \begin{cases} 3^{k_1}y_1 + 3^{k_2}y_2 + 3^{k_3}y_3 = 0 \\ 3^{k_1}y_1^3 + 3^{k_2}y_2^3 + 3^{k_3}y_3^3 = 0 \end{cases}$$

has a non-trivial solution in \mathbb{Q}. For the purpose of proving Theorem 1.5, we may replace (k_1, k_2, k_3) by an equivalent triple (k'_1, k'_2, k'_3). This will cause the system (13.1) to be replaced by an equivalent system. Moreover, $k_1 + k_2 + k_3 \equiv k'_1 + k'_2 + k'_3 \pmod{3}$ and if k_1, k_2, k_3 are distinct, then so are k'_1, k'_2, k'_3.

One easily checks that any triple (k_1, k_2, k_3) with $k_1 + k_2 + k_3 \equiv 0 \pmod{3}$, is equivalent to some (k'_1, k'_2, k'_3), where $(k'_1, k'_2, k'_3) \equiv (0, 0, 0), (0, 1, 2)$ or $(0, 0, 1) \pmod{3}$. Thus it suffices to show that our system has no non-zero solutions over \mathbb{Q} in each of these three cases.

Case 1: $k_1 = 3e_1$, $k_2 = 3e_2$, $k_3 = 3e_3$, where e_1, e_2, and e_3 are distinct integers. Substituting $z_i := 3^{e_i}y_i$, we obtain

$$\begin{cases} 3^{2e_1}z_1 + 3^{2e_2}z_2 + 3^{2e_3}z_3 = 0 \\ z_1^3 + z_2^3 + z_3^3 = 0 \end{cases}$$

By Fermat's last theorem, the only solutions to the second equation in $\mathbb{F}^2(\mathbb{Q})$ are

$$(1 : -1 : 0), (1 : 0 : -1) \text{ and } (0 : 1 : -1).$$

None of them satisfy the first equation.

Case 2: $k_1 = 3e_1$, $k_2 = 3e_2 + 1$, $k_3 = 3e_3 + 2$. In this case equation (1.1) has no non-trivial solutions over \mathbb{Q} by Proposition 12.2. Hence, neither does the system (1.2).

Case 3: $k_1 = 3e_1$, $k_2 = 3e_2$, and $k_3 = 3e_3 + 1$, where $e_1 \not= e_2$. Once again, setting $z_i := 3^{e_i}y_i$, we reduce our system to

$$\begin{cases} 3^{2e_1}z_1 + 3^{2e_2}z_2 + 3^{2e_3}z_3 = 0 \\ z_1^3 + z_2^3 + 3z_3^3 = 0 \end{cases}$$
By [Sel, Theorem VIII, p. 301], the only solution \((z_1 : z_2 : z_3) \in \mathbb{P}^2(\mathbb{Q})\) to the second equation is \((1 : -1 : 0)\). Since \(e_1 \neq e_2\), this point does not satisfy the first equation. This completes the proof of Theorem 1.5.

\[\square\]

14. Beyond Theorem 1.5

Conjecture 14.1. *Theorem 1.5 remains true for all triples \(k_1, k_2, k_3\) of distinct non-negative integers.*

We offer the following partial result in support of Conjecture 14.1.

Proposition 14.2. *Theorem 1.5 remains valid for any \(n = 3^{k_1} + 3^{k_2} + 3^{k_3}\) such that \(k_1 > k_2 > k_3 \geq 0\) and \(k_1 \neq k_2 \pmod{3}\).*

In particular, the Hermite-Joubert Problem 1.1 (with \(p = 3\) and \(F_0 = \mathbb{Q}\)) has a negative answer for \(n = 3^{k_1} + 3^{k_2} + 3^{k_3}\), where \(k_1 > k_2 > k_3 \geq 0\) and \(k_1 \equiv k_3 \equiv 0 \pmod{3}\), and \(k_2 \equiv 2 \pmod{3}\) or alternatively, if \(k_2 \equiv k_3 \equiv 0 \pmod{3}\) and \(k_1 \equiv 2 \pmod{3}\). These cases are not covered by Theorem 1.5. The smallest of these new examples is \(n = 3^3 + 3^2 + 3^3 = 37\).

Proof of Proposition 14.2. By Theorem 1.4 it suffices to show that the system

\[
\begin{cases}
3^{k_1} y_1 + 3^{k_2} y_2 + 3^{k_3} y_3 = 0 \\
3^{k_1} y_1^3 + 3^{k_2} y_2^3 + 3^{k_3} y_3^3 = 0
\end{cases}
\]

does not have a solution \((y_1, y_2, y_3) \neq (0, 0, 0)\) with \(y_1, y_2, y_3 \in \mathbb{Q}\). Assume the contrary.

After dividing both equations by \(3^{k_3}\), and replacing \(k_1, k_2\) by \(k_1 - k_3\) and \(k_2 - k_3\) respectively, we may assume without loss of generality that \(k_3 = 0\). Substituting \(y_3 = -3^{k_1} y_1 - 3^{k_2} y_2\) into the second equation, we obtain

\[3^{k_1} y_1^3 + 3^{k_2} y_2^3 - 3^{2k_1+k_2+1} y_1^2 y_2 - 3^{k_1+2k_2+1} y_1 y_2^2 - 3^{3k_2} y_2^3 = 0.\]

Clearly \(y_1, y_2 \neq 0\). Set

\[M_1 := \nu_3(3^{k_1} y_1^3) = k_1 + 3\nu_3(y_1),\]
\[M_2 := \nu_3(3^{k_2} y_2^3) = k_2 + 3\nu_3(y_2),\] and
\[M := \min(M_1, M_2).\]

Here \(\nu_3\) denotes the 3-adic valuation. Since \(k_1 \neq k_2 \pmod{3}\), we have \(M_1 \neq M_2\).

We claim that the 3-adic valuation of each of the last four terms on the left hand side of (14.1) is \(> M\). If we manage to prove this claim, then we will be able to conclude that

\[\nu_3(3^{k_1} y_1^3 + 3^{k_2} y_2^3 - 3^{2k_1+k_2+1} y_1^2 y_2 - 3^{k_1+2k_2+1} y_1 y_2^2 - 3^{3k_2} y_2^3) = M,\]

contradicting (14.1), and Proposition 14.2 will follow.

To prove the claim, we will consider each term separately:

(i) \(\nu_3(3^{3k_1} y_1^3) = 3k_1 + 3\nu_3(y_1) > M_1 > M,\)

(ii) \(\nu_3(3^{2k_1+k_2+1} y_1^2 y_2) = 2k_1 + k_2 + 2\nu_3(y_1) + \nu_3(y_2) + 1 > \frac{2}{3} M_1 + \frac{1}{3} M_2 > \frac{2}{3} M + \frac{1}{3} M = M.\)

(iii) \(\nu_3(3^{k_1+2k_2+1} y_1 y_2^2) = k_1 + 2k_2 + \nu_3(y_1) + 2\nu_3(y_2) + 1 > \frac{1}{3} M_1 + \frac{2}{3} M_2 > \frac{2}{3} M + \frac{1}{3} M = M.\)

(iv) \(\nu_3(3^{3k_2} y_2^3) = 3k_2 + 3\nu_3(y_2) > M_2 > M.\)

This completes the proof of the claim and thus of Proposition 14.2.

\[\square\]
Using Proposition 14.2, one readily checks that Conjecture 14.1 follows from Conjecture 14.3 below.

Conjecture 14.3. Let \((q_1 : q_2 : q_3)\) be a \(\mathbb{Q}\)-point of the curve \(C \subset \mathbb{P}^2\) given by \(x_1^3 + x_2^3 + 9x_3^3 = 0\). Then \(3^a q_1 + 3^b q_2 + q_3 \neq 0\) for any integers \(a > b > 0\).

Note that if we view \(C\) as an elliptic curve with the origin at \((1 : -1 : 0)\), then the group \(C(\mathbb{Q})\) of rational points is cyclic, generated by \((1 : 2 : -1)\); see [Sel, p. 357].

Acknowledgements

The authors are grateful to M. Bennett, N. Bruin, A. Duncan, S. Gaulhiac, D. Ghioca and B. Poonen for stimulating discussions.

Some of the results of this paper were announced during the Clifford Lectures at Tulane University in March 2015. The second author would like to thank M. Brion and M. Can for inviting him to take part in the Clifford Lectures and to submit a paper for the proceedings.

References

Department of Mathematics, University of British Columbia, Vancouver, CANADA

E-mail address: mbrassil@math.ubc.ca, reichst@math.ubc.ca