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Abstract. Let d and n be positive integers, and E/F be a separable field

extension of degree m =
(n+d

n

)
. We show that if |F | > 2, then there exists a

point P ∈ Pn(E) which does not lie on any degree d hypersurface defined over

F . In other words, the m Galois conjugates of P impose independent condi-
tions on the m-dimensional F -vector space of degree d forms in x0, x1, . . . , xn.

As an application, we determine the maximal dimension of an F -linear system

L of hypersurfaces such that every F -member of L is irreducible over F .

1. Introduction

Consider the vector space V of all degree d homogeneous forms in n + 1 vari-
ables with coefficients in a field F . An elementary counting argument shows that
m := dim(V ) =

(
n+d
n

)
. Each point of P(V ) can be identified with a projective

hypersurface in Pn defined over F . It is well known that if F is an infinite field,
l points of Pn(F ) in general position impose linearly independent conditions on
hypersurfaces of degree d, provided that l ⩽ m; cf. Lemma 3. In particular, for
points P1, . . . , Pm of Pn in general position, there is no hypersurface of degree d
which passes through all of them.

Now suppose F is an arbitrary field (possibly finite) and E/F is a separable field
extension of degreem. Can we choose P ∈ Pn(E) so that them Galois conjugates of
P impose independent conditions on degree d hypersurfaces in Pn? In other words,
is there always a P ∈ Pn(E) which does not lie on any degree d hypersurface defined
over F? Our main result gives an affirmative answer to this question under a mild
restriction on F .

Theorem 1. Let d, n ∈ N, and E/F be a separable field extension of degree m :=(
n+d
n

)
where |F | > 2. Then there exists a point P ∈ Pn(E) such that P does not lie

on any hypersurface of degree d defined over F .

Theorem 1 can be restated as follows: there exist a0, a1, ..., an ∈ E such that the
m elements ai00 ai11 · · · ainn of E are linearly independent over F . Here i0, i1, . . . , in
range over non-negative integers such that i0 + i1 + ... + in = d. Note that in the
case, where n = 1, this assertion specializes to the Primitive Element Theorem for
the separable field extension E/F .

As an application of Theorem 1, we prove a sharp result regarding the linear
systems of hypersurfaces whose Fq-members are all irreducible. Recall that a linear
system L = ⟨F0, F1, ..., Fr⟩ consists of hypersurfaces defined by c0F0+ ...+c0Fr = 0
where ci are scalars. By definition, Fq-members of L are those hypersurfaces where
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the coefficients ci all live in Fq. A linear system L of hypersurfaces will be called
Fq-irreducible if every Fq-member of L is irreducible over Fq. The following theorem
determines the maximum size of an Fq-irreducible linear system.

Theorem 2. Let q > 2, d, n ∈ N, and r :=
(
n+d
n

)
−
(
n+d−1

n

)
− 1 =

(
n+d−1
n−1

)
− 1.

(1) For t > r, no t-dimensional Fq-irreducible linear system of degree d exists.
(2) There exists an r-dimensional Fq-irreducible linear system of degree d.

Computer experiments with specific values of n and d suggest that the assertion
of Theorem 1 may be true when |F | = 2, even though our proof does not go through
in this case. If the assumption that |F | > 2 can be dropped in Theorem 1, then
the assumption that q > 2 can be dropped in Theorem 2.

The remainder of this paper is structured as follows. In Section 2 we use a general
position argument to prove Theorem 1 under the assumption that F is infinite. In
the case where F is finite, the concept of general position no longer applies. Here
we employ a point-counting argument. The strategy behind this counting argument
is outlined in Section 3, and is carried out in Sections 4 and 5. In Section 6 we
deduce Theorem 2 from Theorem 1 and present two examples.
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2. Proof of Theorem 1 in the case, where F is infinite

The following lemma is well known; we include a short proof for the sake of
completeness.

Lemma 3. Let F be an infinite field, d and n be positive integers, and m =
(
n+d
n

)
.

Then there exist P1, . . . , Pm ∈ Pn(F ) such that no degree d hypersurface in Pn

passes through P1, . . . , Pm.

Proof. Let V0 = H0(Pn,O(d)) be them-dimensional vector space space of all degree
d forms in x0, . . . , xn and Vi ⊂ V be the subspace of forms vanishing at P1, . . . , Pi.
Clearly Vi ⊆ Vi−1 for any choice of P1, . . . , Pi. Requiring forms to vanish on each
Pi imposes one linear condition; hence, dim(Vi) ⩾ m − i, again for any choice of
P1, . . . , Pi. We claim that for a suitable choice of P1, . . . , Pm, we have

(2.1) Vi ⊊ Vi−1

for every i = 1, 2, . . . ,m or equivalently, dim(Vi) = m − i. In particular, for this
choice of P1, . . . , Pm, we will have dim(Vm) = 0, and the lemma will follow.

We will choose P1, . . . , Pi so that (2.1) holds, by induction on i ∈ {1, . . . ,m}.
Indeed, assume P1, . . . , Pi−1 have been chosen. Since dim(Vi−1) ⩾ m − i + 1 > 0,
there exists a non-zero element fi ∈ Vi−1. We will now choose Pi ∈ Pn(F ) so that
fi(Pi) ̸= 0. The existence of Pi with this property is obvious, since we are assuming
that F is an infinite field. For this choice of Pi, f ∈ Vi−1 \ Vi, and (2.1) follows.
This completes the proof of the claim and thus of Lemma 3. □
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Proposition 4. Let d and n be positive integers and E/F be a commutative al-

gebra of degree m =
(
n+d
n

)
over F . View E as an m-dimensional vector space

over F . Then there is a homogeneous polynomial function H on the affine space

AF (E
n+1) ≃ A(n+1)m

F defined over F with the following property: For any field
extension F ′/F , E′ = E ⊗F F ′, a point a = (a0 : . . . : an) ∈ Pn(E′) lies on a
hypersurface of degree d defined over F ′ if and only if H(a0, a1, . . . , an) = 0.

Proof. Let M1, . . . ,Mm be distinct monomials of degree d in x0, . . . , xn. Clearly
a = (a0 : a1 : . . . : an) ∈ Pn(E) lies on a hypersurface of degree d in Pn defined over
F if and only if M1(a), . . . ,Mm(a) are linearly dependent over F .

Suppose {b1, . . . , bn} is an F -basis of E. Write

(2.2) bibj =

n∑
h=1

chijbh,

where the structure constants chij lie in F . Using the basis b1, . . . , bm we can identify
E with Fm as an F -vector space (not necessarily as an algebra). Set

(2.3) ai = yi,1b1 + . . .+ yi,mbm,

where each yi,j ∈ F . Using formulas (2.2), for every s = 1, . . . ,m, we can express
Ms(a) in the form Ms(a) = ps,1b1+ . . .+ ps,mbm, where each ps,t is a homogeneous
polynomial of degree d in yi,j with coefficients in F . By abuse of notation, we will
denote these polynomials by ps,t(yi,j).

Now, view yi,j as independent (n+ 1)m variables, as i ranges from 0 to n and j
ranges from 1 to m. Set

H(yi,j) = det


p1,1(yi,j) p1,2(yi,j) · · · p1,m(yi,j)
p2,1(yi,j) p2,2(yi,j) · · · p2,m(yi,j)

...
...

. . .
...

pm,1(yi,j) pm,2(yi,j) · · · pm,m(yi,j)

 .

For any field extension F ′/F , an F ′-point (α′
i,j) ∈ A(n+1)m

F represents a point
a′ = (a′0 : . . . : a′m) ∈ Pn(E′), where a′i = αi,1b1 + . . . + αi,mbm ∈ E′ for each
i = 0, 1, . . . , n. By our construction, H(αi,j) = 0 if and only if M1(a

′), . . . ,Mm(a′)
are linearly dependent over F ′, and the proposition follows. □

Conclusion of the proof of Theorem 1, assuming F is an infinite field. Let H(yi,j)

be the homogeneous polynomial function on AF (E
n) ≃ A(n+1)m

F defined over F
whose existence is asserted by Proposition 4. We claim that H is not identically 0.

Once this claim is established, Theorem 1 readily follows from Proposition 4;
since F is an infinite field, we can specialize each xij to some cij ∈ F so that
H(cij) ̸= 0.

To prove the claim, it suffices to show that H(cij) ̸= 0, for some choice of cij in
a larger field F ′ containing F . Let us choose F ′ so that F ′ splits E/F , i.e., E⊗F F ′

isomorphic to E′ := F ′ × . . . × F ′ (m times). In particular, we can take F ′ to be
an algebraic closure of F .

Using Proposition 4, we can rephrase the above observation as follows: in order
to prove the existence of a point a = (a0 : a1 : . . . : an) ∈ Pn(E) with the property
that it does not lie of any hypersurface of degree d defined over F , it suffices to
prove the existence of a point a′ = (a′0 : . . . : an) ∈ Pn(E

′
) which does not lie on
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any hypersurface of degree d defined over F ′. To finish the proof, observe that the
existence of a′ with this property is equivalent to Lemma 3 with F = F ′. □

3. Proof of Theorem 1 in the case, where F is finite: the overall
strategy

From now on, we will assume that F = Fq and E = Fqm are finite fields. The
purpose of this section is to outline a strategy for a proof of Theorem 1 in this case.
We begin by proving Theorem 1 under an additional assumption, q > d, which
greatly simplifies our counting argument.

Proposition 5. Let q be a prime power, d, n ∈ N and m :=
(
n+d
n

)
. Assume q > d.

Then there exists a point P ∈ Pn(Fqm) such that P does not lie on any hypersurface
of degree d defined over Fq.

Note that here q = 2 is allowed, unlike in Theorem 1, but only in the (trivial)
case, where d = 1. For the remainder of the paper,

H ⊂ Pn will denote the union of all hypersurfaces of degree d defined over Fq.

Proof of Proposition 5. Observe that deg(H) = d(qm−1 + ...+ q + 1). Since q > d,
we have

deg(H) ⩽ (q − 1)(qm−1 + · · ·+ q + 1) = qm − 1

On the other hand, the degree of a space-filling hypersurface in Pn(Fqm) defined
over Fq is at least qm+1; see, e.g., [MR98]. We conclude that H is not space-filling
in Pn(Fqm), and the proposition follows. □

When d ⩾ q, we will need a more delicate argument to show that H does not
contain every Fqm -point of Pn. We will estimate the number of Fqm-points on H,
with the goal of showing that this number is strictly smaller than the number of
Fqm -points in Pn. To estimate the number of Fqm -points on H, we will subdivide
the hypersurfaces X ⊂ Pn of degree d defined over Fq into two classes:

a) X is geometrically irreducible (that is, irreducible over Fq), or
b) X is geometrically reducible.

When X ⊂ Pn is geometrically irreducible, we will use the inequality

(3.1) |X(Fqm)| ⩽ (qm(n−1)+· · ·+qm+1)+(d−1)(d−2)qm(n−3/2)+5d13/3qm(n−2),

due to Cafure and Matera [CM06]. When X is geometrically reducible, we will use
Serre’s estimate [Ser91],

(3.2) |X(Fq)| ⩽ dqm(n−1) + qm(n−2) + · · ·+ qm + 1.

Note that both of these are polynomial bounds in q of degreem(n−1). However, the
one in Case b) is asymptotically weaker, because the leading term qm(n−1) comes
with coefficient 1 in (3.1) and with coefficient d in (3.2). To get a strong upper
bound on the number of Fqm-points on H, we need to make sure that Case b) does
not occur too often. In other words, if we let t denote the fraction of hypersurfaces
in Pn over Fq of fixed degree d which are not geometrically irreducible, then our
first task is to bound t from above. Note that t depends on q, d and n.

Poonen showed that t → 0, as d → ∞ and q and n remain fixed; see [Poo04,
Proposition 2.7]. This is not enough for our purposes. We will refine the inequalities
from the proof of [Poo04, Proposition 2.7] to establish the following upper bound
on t.
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Proposition 6. Let t denote the fraction of hypersurfaces in Pn of degree d over
Fq that are geometrically reducible. Assume that one of the following conditions
holds:

• n = 2, d ⩾ 6 and q ⩾ 3; or
• n ⩾ 3, d ⩾ 3 and q ⩾ 3.

Then (d− 1)tq ⩽ 2.

We will prove this proposition in the next section, then use it to complete the
proof of Theorem 1 in Section 5.

4. Proof of Proposition 6

Following Poonen [Poo04, Proof of Proposition 2.7], we will write

(4.1) t = t1 + t2

and estimate t1 and t2 separately. Here

• t1 is the proportion of hypersurfaces of degree d in Pn defined over Fq,
which are reducible over Fq, and

• t2 is the proportion of hypersurfaces of degree d in Pn defined over Fq,
which are irreducible over Fq but reducible over Fqe for some integer e > 1,
dividing d.

Lemma 7. t1 ⩽ 29
27q

2−d when n = 2, q ⩾ 3 and d ⩾ 6, while t1 ⩽ 1.5 ·
q−

n(n+d−1)
2 +n+1 for all n ⩾ 3, q ⩾ 3, and d ⩾ 3.

Proof. Following the proof of [Poo04, Proposition 2.7], we obtain:

(4.2) t1 ⩽
⌊d/2⌋∑
i=1

q−Ni ,

where

Ni =

(
n+ d

d

)
−
(
n+ i

n

)
−

(
n+ d− i

n

)
Claim: For each 1 ⩽ i ⩽ ⌊d/2⌋ − 1

(a) Ni+1 −Ni ⩾ d− 2i− 1, and

(b) Ni+1 −N1 ⩾ d− 3.

To prove part (a), we use Pascal’s identity to rewrite Ni+1 −Ni as

Ni+1 −Ni =

(
n+ d− i− 1

n− 1

)
−

(
n+ i

n− 1

)
=

d−i∑
j=0

(
n− 2 + j

n− 2

)
−

i+1∑
j=0

(
n− 2 + j

n− 2

)

=

d−i∑
j=i+2

(
n− 2 + j

n− 2

)
Each term in the above sum is ⩾ 1 (note also that d− i ⩾ i+2 since i ⩽ ⌊d/2⌋−1);
thus Ni+1 −Ni ⩾ d− 2i− 1, as claimed in part (a).
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To prove part (b), write Ni+1−N1 = (Ni+1−Ni)+(Ni−Ni−1)+ . . .+(N2−N1).
Part (a) tells us that each term in this sum is non-negative, and the last term,
N2 −N1, is ⩾ d− 3. Thus

(4.3) Ni+1−N1 = (Ni+1−Ni)+(Ni−Ni−1)+ . . .+(N2−N1) ⩾ N2−N1 ⩾ d−3.

The completes the proof of the Claim.

Next we estimate N1 from below:

N1 =

(
n+ d− 1

n− 1

)
−

(
n+ 1

n

)
=

(
n+ d− 1

d

)
−

(
n+ 1

1

)
=

(n+ d− 1)(n+ d− 2) · · · (n+ 1)n

d!
− (n+ 1)

= (n+ d− 1) ·
(
n+ d− 2

d

)
· · ·

(
n+ 1

3

)
· n
2
− (n+ 1)(4.4)

⩾
(n+ d− 1)n

2
− (n+ 1).

Substituting (4.3) and (4.4) into the inequality (4.2), we deduce that

t1 ⩽ q−N1

(
1 +

(
d

2
− 1

)
q3−d

)
= q−

(n+d−1)n
2 +(n+1)

(
1 +

(
d

2
− 1

)
q3−d

)
An elementary computation shows that for integers d ⩾ 6 and q ⩾ 3 (which corre-
sponds to the case n = 2), the expression

(
1 +

(
d
2 − 1

)
q3−d

)
is at most 29

27 (which is
achieved when q = 3 and d = 6). Similarly, when n ⩾ 3, we need to find the max-
imum of the expression

(
1 +

(
d
2 − 1

)
q3−d

)
when q ⩾ 3 and d ⩾ 3; the maximum

equals 1.5 and is attained when q = 3 and d = 3.
Thus,

t1 ⩽
29

27
· q2−d when n = 2, while

t1 ⩽ 1.5 · q−
(n+d−1)n

2 +(n+1) when n ⩾ 3,

as desired. □

Next, we prove a lower bound on the proportion t2 of hypersurfaces which are
irreducible but not geometrically irreducible.

Lemma 8. Let n ⩾ 2, q ⩾ 3, d ⩾ 3, we have t2 ⩽ (d− 1)q−
1
4 (

n
2)d

2+d−1.

Proof. It is shown in the proof of [Poo04, Proposition 2.7] that

(4.5) t2 ⩽
∑

e|d,e>1

q−Me

where Me =

(
d+ n

n

)
− e

(
d/e+ n

n

)
. Our first task is to provide a lower bound on

Me.

Claim 1. Assume n ⩾ 2, q ⩾ 3, d ⩾ 3 and e | d, where e > 1. Then

Me ⩾

(
e

2

)(
n

2

)(
d

e

)2

− e+ 1.



LINEAR SYSTEM OF HYPERSURFACES PASSING THROUGH A GALOIS ORBIT 7

Proof of Claim 1. Let S = T ∪ F , where T and F are disjoint sets of cardinality d
and n, respectively. The binomial coefficient

(
d+n
n

)
counts the number of n-subsets

of S.
Partition T as T = T1 ∪ T2 ∪ · · · ∪ Te, where |Ti| = d/e for each i, and set

Si = Ti ∪ F . Note that |Si| = (d/e) + n; hence, the binomial coefficient
(
d/e+n

n

)
counts the number of n-subsets of Si. It is also clear that the number of common
n-subsets of Si and Sj for i ̸= j is exactly 1, namely the n-set F . Thus, the total
number of n-subsets arising from S1, S2, · · · , Se is exactly:

e ·
((

d/e+ n

n

)
− 1

)
+ 1 = e ·

(
d/e+ n

n

)
− e+ 1

Next, we construct additional n-subsets of S that are not contained in any Sk. Fix
integers 1 ⩽ i < j ⩽ e. Choose elements a ∈ Ti and b ∈ Tj and consider an n-subset
of S containing both a and b. Any such subset is of the form

{a, b} ∪ E

for some (n− 2)-subset E of F . By our contruction {a, b} ∪ E is not contained in
Sk for any 1 ⩽ k ⩽ e. The number of subsets of the form {a, b} ∪ E is equal to
(d/e) · (d/e) ·

(
n

n−2

)
once i and j are fixed, because there are d/e ways to choose a

in Ti, d/e ways to choose b in Tj , and
(

n
n−2

)
=

(
n
2

)
ways to choose an (n−2)-subset

E of F . Varying (i, j) among the
(
e
2

)
choices, we get a total contribution of(

e

2

)(
n

2

)(
d

e

)2

many distinct n-subsets of S that do not arise as n-subsets of Sk for any 1 ⩽ k ⩽ e.
Consequently,(

d+ n

n

)
−
(
e ·

(
d/e+ n

n

)
− e+ 1

)
⩾

(
e

2

)(
n

2

)(
d

e

)2

,

leading to the lower bound

Me =

(
d+ n

n

)
− e ·

(
d/e+ n

n

)
≥

(
e

2

)(
n

2

)(
d

e

)2

− e+ 1,

as claimed. □

Claim 2: Me ⩾
1

4

(
n

2

)
d2 − d+ 1

To deduce this bound from Claim 1, note that(
e

2

)(
n

2

)(
d

e

)2

− e+ 1 ⩾

(
1

2
− 1

2e

)(
n

2

)
d2 − d+ 1 ⩾

1

4

(
n

2

)
d2 − d+ 1

since d ⩾ e ⩾ 2.
To complete the proof of Lemma 8, we note that the number of divisors e of d

with e > 1 is at most d − 1. Thus the right hand side of (4.5) has at most d − 1

terms. By Claim 2, each term q−Me is at most q−
1
4 (

n
2)d

2+d−1. This yields the
inequality

t2 ⩽ (d− 1)q−
1
4 (

n
2)d

2+d−1

of Lemma 8. □
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We are now ready to finish the proof of Proposition 6. Writing t = t1 + t2, as
in (4.1) and using Lemma 7 and Lemma 8, we obtain

(4.6) t ⩽ 1.5 · q−
(n+d−1)n

2 +(n+1) + (d− 1)q−
1
4 (

n
2)d

2+d−1

when n ⩾ 3, q ⩾ 3 and d ⩾ 3, while

(4.7) t ⩽
29

27
· q2−d + (d− 1)q−

1
4d

2+d−1,

when n = 2, q ⩾ 3 and d ⩾ 6. We will consider the cases, where n = 2 and n ⩾ 3
separately.

Claim 1: For n = 2, q ⩾ 3 and d ⩾ 6, we have (d− 1)tq ⩽ 2.

Indeed, when n = 2, the inequality (4.6) specializes to

t ⩽
29

27
q2−d + (d− 1)q−

1
4d

2+d−1.

Consequently,

(d− 1)tq ⩽ Θ(q, d) := (d− 1)

(
29

27
q3−d + (d− 1)q−

1
4d

2+d

)
.

For d ⩾ 6, both exponents in q3−d and q−
1
4d

2+d are negative. This yields Θ(q, d) ⩽
Θ(3, d) for q ⩾ 3. On the domain d ⩾ 6, the one-variable function Θ(3, d) achieves
its maximum when d = 6. Thus, (d − 1)tq ⩽ Θ(3, 6) ≈ 1.125. In particular,
(d− 1)tq ⩽ 2. This proves Claim 1.

Claim 2. For n ⩾ 3, q ⩾ 3 and d ⩾ 3, we have (d− 1)tq ⩽ 2.

We argue as in the proof of Claim 1. For n ⩾ 3, the inequality (4.6) implies

t ⩽ 1.5q4−
3
2 (d+2) + (d− 1)q−

3
4d

2+d−1.

where we have substituted n = 3 in (4.6). Consequently,

(d− 1)tq ⩽ Ψ(q, d) := (d− 1)
(
1.5q5−

3
2 (d+2) + (d− 1)q−

3
4d

2+d
)

We have Ψ(q, d) ⩽ Ψ(3, d) for q ⩾ 3. On the domain d ⩾ 3, the one-variable function
Ψ(3, d) achieves its maximum when d = 3. Thus, (d − 1)tq ⩽ Ψ(3, 3) ≈ 0.257.
In particular, (d − 1)tq ⩽ 2. This completes the proof of Claim 2 and thus of
Proposition 6. □

5. Conclusion of the proof of Theorem 1

The case when F is infinite is handled in Section 2. Thus we will assume that
F = Fq and E = Fqm are finite fields. Furthermore, Proposition 5 delivers the
desired result when q > d; hence, from now on, we assume that q ⩽ d.

We follow the strategy outlined in Section 3. Recall the notation we used there:

• H denotes the union of all degree d hypersurfaces in Pn defined over Fq,
and

• t denotes the fraction of these hypersurfaces which are not geometrically
irreducible.
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Our goal is to show that there exists an Fqm-point in Pn which does not lie on H.
As the total number of hypersurfaces of degree d defined over Fq is q

m−1+...+q+1 =
qm−1
q−1 , there are exactly t

(
qm−1
q−1

)
hypersurfaces of degree d which are geometrically

reducible. Using the upper bounds (3.1) and (3.2) on the number of points of a
hypersurface of degree d, we obtain the following inequality:

#H(Fqm) ⩽

(
qm − 1

q − 1

)
· ((1− t)((qm(n−1) + · · ·+ qm + 1) + (d− 1)(d− 2)qm(n−3/2)

+ 5d13/3qm(n−2)) + t(dqm(n−1) + qm(n−2) + · · ·+ qm + 1)),

where m :=
(
n+d
n

)
. After some cancellations, we can bound the term in the paren-

thesis after qm−1
q−1 from above by

(1 + (d− 1)t)qm(n−1) + qm(n−2) + ...+ qm + 1(5.1)

+ (d− 1)(d− 2)qm(n−3/2) + 5d13/3qm(n−2).

By Proposition 6, we have

(5.2) (d− 1)t ⩽
2

q
,

for all n ⩾ 3, d ⩾ 3 and q ⩾ 3, or n = 2, q ⩾ 3 and d ⩾ 6. Since we already
know that Theorem 1 holds when q > d (see Proposition 5), we may assume that
the inequality (5.2) holds unless (n, q, d) equals (2, 3, 3), (2, 3, 4), (2, 3, 5), (2, 4, 4),
(2, 4, 5) and (2, 5, 5). These exceptional cases will be handled using a computer at
the end of the proof; we ignore them for now. Next, we bound the lower-order
terms in the expression (5.1).

Claim. If n ⩾ 2, q ⩾ 3 and d ⩾ 3, then we have

(d− 1)(d− 2)qm(n−3/2) + (qm(n−2) + · · ·+ qm + 1) + 5d13/3qm(n−2) < qm(n−1)−1

In order to verify this inequality, we first note that

(5.3) qm(n−2) + · · ·+ qm + 1 =
qm(n−1) − 1

qm − 1
<

qm(n−1)

qm − 1
<

qm(n−1)

1000q
,

since q ⩾ 3 and m ⩾ (d + 2)(d + 1)/2 ⩾ 10 because d ⩾ 3. Employing (5.3), the
left-hand side of the desired inequality is less than

(5.4) (d− 1)(d− 2)qm(n−3/2) +
qm(n−1)−1

1000
+ 5d13/3qm(n−2).

Dividing the expression from (5.4) by qm(n−1)−1, we can easily check

(d− 1)(d− 2)q1−m/2 +
1

1000
+ 5d13/3q1−m < 1,

keeping in mind that q ⩾ 3 and m ⩾ (d+ 2)(d+ 1)/2, while d ⩾ 3; this completes
the proof of the claim.

Combining the Claim with the inequality (5.2), we see that the quantity in (5.1)
is less than (

1 +
2

q

)
qm(n−1) + qm(n−1)−1 < qm(n−1) + 3qm(n−1)−1.
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Thus, we obtain the following upper bound on #H(Fqm).

#H(Fqm) <

(
qm − 1

q − 1

)(
qm(n−1) + 3qm(n−1)−1

)
In order to show that H does not pass through every Fqm -point in Pn, it is enough
to show that (

qm − 1

q − 1

)(
qm(n−1) + 3qm(n−1)−1

)
⩽ qmn,

because #Pn(Fqm) = qmn + · · · + qm + 1. By replacing qm − 1 with qm on the
left-hand-side, we claim that the stronger inequality holds:

qm(qm(n−1) + 3qm(n−1)−1) ⩽ qmn+1 − qmn.

After cancelling out qmn−1 from both sides, it remains the show,

q + 3 ⩽ q2 − q.

This last inequality q2 − 2q − 3 ⩾ 0 is valid for all q ⩾ 3. Therefore, we have
established Theorem 1 with F = Fq and E = Fqm , for all triples (n, q, d) with
n ⩾ 2, q ⩾ 3, d ⩾ 1, and (n, q, d) ̸= (2, 3, 3), (2, 3, 4), (2, 3, 5), (2, 4, 4), (2, 4, 5),
(2, 5, 5).

We now complete the proof of Theorem 1 by a computer-assisted computation
in these six exceptional cases. For each of the exceptional triples (n, q, d), it suffices

to find a single point P ∈ P2(Fqm) where m =
(
n+d
n

)
such that P does not lie on

any degree d hypersurface defined over Fq.
When (n, q, d) = (2, 3, 3) we write F310 as F3[a]/(a

10 + a4 + a + 1), and check
that P = (a : a8 : 1) does not lie on any cubic plane curve defined over F3.

When (n, q, d) = (2, 3, 4), we write F315 as F3[a]/(a
15 + a2 − 1) and check that

P = (a : a9 : 1) does not lie on any quartic plane curve defined over F3.
When (n, q, d) = (2, 3, 5), we write F321 as F3[a]/(a

21 + a16 − 1) and check that
P = (a : a18 : 1) does not lie on any quintic plane curve defined over F3.

When (n, q, d) = (2, 4, 4), we write F415 as F4[a]/(a
15 + a + 1) and check that

P = (a3 : a8 : 1) does not lie on any quartic plane curve defined over F4.
When (n, q, d) = (2, 4, 5), we write F421 as F4[a]/(a

21 + a2 + 1) and check that
P = (a6 : a11 : 1) does not lie on any quintic plane curve defined over F4.

When (n, q, d) = (2, 5, 5), we write F521 as F5[a]/(a
21 + a18 + a14 + 1) and check

that P = (a : a9 : 1) does not lie on any quintic plane curve defined over F5. □

6. Proof of Theorem 2

Suppose P is a property of an algebraic hypersurface. For instance, P could
stand for “is smooth”, or “is irreducible over Fq”, or “is geometrically irreducible.”
Given a finite field Fq, it is natural to ask the following.

Question 9. What is the largest value of r such that there exists a dimension-r
linear system L of degree d hypersurfaces in Pn such that every Fq-member of L
satisfies P?

More explicitly, Question 9 asks for the largest value of r, as a function of q, n, d,
such that there exists a linear system L = ⟨F0, F1, · · · , Fr⟩ of (projective) dimension
r with the following property: each nontrivial linear combination c0F0+· · ·+crFr =
0 with ci ∈ Fq defines a hypersurface in Pn that satisfies the property P.
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When P represents the property of being smooth, we answered Question 9
in [AGR23] under a mild restriction on the characteristic of our field. More precisely,
we proved that the maximum value of r is n whenever char(Fq) ∤ gcd(d, n+ 1).

When P represents the property of being irreducible over Fq, Theorem 2 pin-

points the exact answer: the largest value of r is
(
n+d
n

)
−
(
n+(d−1)

n

)
−1 =

(
n+d−1
n−1

)
−1.

Proof of Theorem 2. (1) Let L = ⟨F0, ..., Ft⟩ be a linear system of (projective)
dimension t > r. Let V denote the vector space of all degree-d forms and consider
the following subspace:

W = {F ∈ V | F is divisible by x0}.

Evidently, dim(V ) =
(
n+d
n

)
and dim(W ) =

(
n+d−1

n

)
. Thus,

dimFq
(W ) + dimFq

(L) =
(
n+ d− 1

n

)
+ t+ 1 >

(
n+ d

n

)
due to t > r and our choice of r. It follows that W and L meet in a nontrivial Fq-
subspace inside V . In other words, L contains a hypersurface defined over Fq whose
equation is divisible by x0. Therefore, L is not an Fq-irreducible linear system.

(2) We apply Theorem 1 for degree d − 1 hypersurfaces in Pn. We obtain a

point P ∈ Pn(Fqm) with m =
(
n+d−1

n

)
that is not contained in any hypersurface of

degree d − 1 defined over Fq. Clearly, P is also not contained in any hypersurface
of degree at most d− 1. Let P1 := P , and set S = {P1, · · · , Pm} to be the orbit of
P under Gal(Fqm/Fq). Consider the vector space VS of degree d forms defined over
Fq, which vanish at the point P (and therefore at each point of S). Since vanishing
at each additional point imposes at most one new linear condition, we obtain

dimVS ⩾

(
n+ d

d

)
−m =

(
n+ d

d

)
−
(
n+ d− 1

n

)
= r + 1.

Pick linearly independent forms F0, F1, ..., Fr ∈ VS . Consider the linear system
L = ⟨F0, F1, ..., Fr⟩ of degree d hypersurfaces. We claim that each Fq-member F
of L is irreducible over Fq. Otherwise, F = G · H where deg(G) ⩽ d − 1 and
deg(H) ⩽ d − 1. Since F (P ) = 0, we have G(P ) = 0 or H(P ) = 0. Either case
leads to a contradiction because P does not lie on a hypersurface of degree at most
d− 1 defined over Fq. Therefore, L is Fq-irreducible. □

Example 10. Consider the case d = 4 and n = 2, along with q > 2.

• By [AGR23], there exist n + 1 = 3 linearly independent plane quartics
Ci = {Fi = 0} for i = 0, 1, 2 such that the quartic {a0F0+a1F1+a2F2 = 0}
is smooth for all (a0, a1, a2) ∈ (Fq)

3 \{(0, 0, 0)}. The number 3 is maximum
possible here.

• By Theorem 2, there exist r + 1 =
(
d+2
2

)
−

(
d+1
2

)
= d + 1 = 5 linearly

independent plane quartics Ci = {Fi = 0} for i = 0, 1, 2, 3, 4 such that the

quartic {
∑4

i=0 aiFi = 0} is irreducible over Fq for all (a0, a1, a2, a3, a4) ∈
(Fq)

5 \ {(0, 0, 0, 0, 0)}. The number 5 is maximum possible here.

Example 11. Consider the case d = 3 and n = 3, along with q > 2.

• By [AGR23], there exist n+1 = 4 linearly independent cubic surfaces Ci =
{Fi = 0} for i = 0, 1, 2, 3 such that the cubic {a0F0+a1F1+a2F2+a3F3 = 0}
is smooth for all (a0, a1, a2, a3) ∈ (Fq)

4 \ {(0, 0, 0, 0)}. The number 4 is
maximum possible here.
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• By Theorem 2, there exist r + 1 =
(
d+3
3

)
−

(
d+2
3

)
= 1

2 (d
2 + 3d + 2) = 10

linearly independent cubic surfaces Ci = {Fi = 0} for i = 0, 1, 2, · · · , 9 such

that the cubic {
∑9

i=0 aiFi = 0} is irreducible over Fq for all (a0, ..., a9) ∈
(Fq)

10 \ {(0, · · · , 0)}. The number 10 is maximum possible here.
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