Problem set 3. Due Thursday, November 17.

Mathematics 600, Term 2, 2016. Instructor: Reichstein.

In Problems 1–4, \(n \) will denote a positive integer, \(F \) will denote a field containing a primitive root of unity \(\zeta \in F \), and \(a, b \) will denote non-zero elements of \(F \). Define the “cyclic algebra” \(A = \left(\frac{a, b}{F} \right)_\zeta \) by generators \(x, y \) and relations \(x^n = a, \ y^n = b \) and \(xy = \zeta yx \). Note that is a direct generalization of the definition of the quaternion algebra \(A = \left(\frac{a, b}{F} \right) \), where \(n = 2 \). Here \(\zeta = -1 \) is the unique primitive \(n \)th root of unity, and we write \(\left(\frac{a, b}{F} \right) \) in place of \(\left(\frac{a, b}{F} \right)_{-1} \).

1. Show that \(\left(\frac{a, b}{F} \right)_\zeta \) is isomorphic to \(\left(\frac{as^n, bt^n}{F} \right)_{s,t} \zeta \) as an \(F \)-algebra, for any \(s, t \in F^* \).

2. Show that \(\left(\frac{1, b}{F} \right)_\zeta \) is isomorphic to the matrix algebra \(M_n(F) \), as an \(F \)-algebra.

3. Show that \(\left(\frac{a, b}{F} \right)_{\zeta} \) is a central simple algebra of degree \(n \).

4. Conversely, suppose \(A \) is a central simple algebra of degree \(n \). Show that \(A = \left(\frac{a, b}{F} \right)_{\zeta} \) for some \(a, b \in F^* \) if and only if there exists an element \(x \in A \) such that \(x^n = a \) but \(x^m \not\in F \) for any \(1 \leq m \leq n - 1 \). Here, as usual, I am identifying \(F \) with \(F \cdot 1 \subset A \).

5. If \(A = \left(\frac{a, b}{F} \right)_{\zeta} \), show that \(A^{op} \simeq \left(\frac{b, a}{F} \right)_{\zeta} \).

6. Show that \(M_m(F) \otimes_F M_n(F) \) is isomorphic to \(M_{mn}(F) \) as an \(F \)-algebra.
(7) Suppose \(\text{char}(F) \neq 2 \). Show that every central simple \(F \)-algebra of degree 2 is isomorphic to the quaternion algebra \(\left(\frac{a, b}{F} \right) \) for some \(a, b \in F^* \).

(8) Let \(A \) and \(B \) be central simple algebras over \(F \). Denote their trace forms by \(q_A \) and \(q_B \). Assume that \(\text{char}(F) = 0 \) or \(\text{char}(F) > \max\{\deg(A), \deg(B)\} \). Show that the trace form of \(A \otimes_F B \) is \(q_A \otimes q_B \).

Recall that the trace form of \(A \) is the quadratic form \(x \mapsto \text{Tr}_{A/F}(x^2) \).

(9) Let \(F = \mathbb{C}(a_1, a_2, b_1, b_2) \), where \(a_1, a_2, b_1, b_2 \) are independent variables and \(A = \left(\frac{a_1, a_2}{F} \right) \), \(B = \left(\frac{b_1, b_2}{F} \right) \) be quaternion algebras. Show that the trace form of \(A \otimes_F B \) is anisotropic over \(F \).

(10) Let \(F, A \) and \(B \) be as in Problem (9). Show that \(A \otimes_F B \) is not cyclic, i.e., is not \(F \)-isomorphic to a central simple algebra of the form \(C = \left(\frac{c_1, c_2}{F} \right) \zeta \) for any primitive 4th root of unity \(\zeta \in \mathbb{C} \) and any \(c_1, c_2 \in F^* \).

Hint: Check that the trace form of \(C \) is isotropic.