Zinovy Reichstein 
Office: 1105 Math Annex 
Phone: 23929 
Email: reichst at math dot ubc dot ca 
James E. Humphreys, Introduction to Lie algebras and representation theory, Springer, 1972. 
Lie theory is the study of continuous group of tranformations. These groups play an important role in various areas of mathematics, from PDEs to number theory, as well as in physics. Their structure is most easily understood by in studying their ``linear approximations", otherwise known as Lie algebras. This course we will focus on the study of finitedimenional Lie algebras and their representations by algebraic methods. We will discuss nilpotent, solvable, and semisimple Lie algebras, root systems, weights, highest weight modules, and (if time permits) universal enveloping algebras. Our ultimate goal will be the classification of complex semisimple Lie algebras. This material is foundational for many areas of pure mathematics. Our textbook is concise and beautifully written. I plan to follow it closely through Chapters IIII, occasionally supplementing the lectures with additional material, such as the Levi Decomposition Theorem. 
High comfort level with linear algebra. Familiarity with abstract algebra will also be helpful. 
The course mark will be based entirely on homework assignemnts.
I plan to assign 68 problem sets during the term.
