Math. 534. Solution to Problem 6, Problem Set 1.

Problem 6: Show that the sum $I + J$ of nilpotent ideals I and I in a Lie algebra L is again nilpotent. Here L is assumed to be finite-dimensional but not necessarily nilpotent.

I will present two solutions. Solution 1 relies only on the definition of nilpotency; it works for any Lie algebra (not necessarily finite-dimensional). Solution 2 relies on Engel’s theorem.

Solution 1. Recall that I^n is defined recursively as follows: $I^0 = I$, $I^{n+1} = [I, I^n]$. By definition, I is nilpotent if $I^n = (0)$ for some n. For convenience, let us set $I^{-n} = L$ for any integer $n < 0$.

I claim that

\[(1) \quad (I + J)^{n+m} \subset I^m + J^n \quad \text{for any integers } m \text{ and } n.\]

If (1) is proved, then the assertion of the problem is immediate: choosing m and n so that $I^m = J^n = (0)$, we obtain $(I + J)^{n+m} = 0$, as desired.

To prove the claim, we argue by induction on $m + n$. The base case, where $n + m < 0$ is obvious: here either $n < 0$ or $m < 0$, so the right hand side of (1) is all of L.

For the induction step, we need to prove that $[a + b, x] \in I^m + J^n$ for every $a \in I$, $b \in J$ and $x \in (I + J)^{m+n-1}$. It suffices to show that both $[a, x]$ and $[b, x]$ lie in $I^m + J^n$.

To prove that $[a, x] \in I^m + J^n$, note that by the induction assumption $x \in I^{m+n-1} \subset I^{m-1} + J^n$. Hence,

\[[a, x] \in [a, I^{m-1}] + [a, J^n] \subset I^m + J^n.\]

Indeed, $[a, I^{m-1}] \subset I^m$ by the definition of I^m and $[a, J^n] \subset J^n$ because J^n is an ideal of L. Similarly, by the induction assumption $x \in I^{m+n-1} \subset I^m + J^{n-1}$

\[[b, x] \subset [b, I^m] + [b, J^{n-1}] \subset I^m + J^n,\]

as desired. \qed

Solution 2. Step 1. There exists a sequence of ideals of L,

\[(0) = L_0 \subset L_1 \subset \cdots \subset L_{n-1} \subset L_r = L,\]

such that there are no ideals of L strictly between L_{i-1} and L_i. Equivalently, each L_i/L_{i-1} is irreducible as an L-module.

To prove this, choose L_1 to be a non-trivial ideal of L of minimal dimension, L_2 to be the preimage of a non-trivial ideal of L/L_1 of
minimal dimension, L_3 to be the preimage of a non-trivial ideal of L/L_2 of minimal dimension, etc.

Step 2. If $a \in I$, then $\text{ad}(a)(L_i) \subset L_{i-1}$ for each $i = 1, \ldots, r$.

Proof: Set $V_i = L_i/L_{i-1}$ and $W_i = \{ v \in V_i \mid \text{ad}(a)(v) = 0 \ \forall \ a \in I \}$. Since I is an ideal of L, W_i is an $\text{ad}(L)$-invariant subspace of V_i (check!), and $W_i \neq (0)$ by Engel’s theorem. Irreducibility of V_i now tells us that $W_i = V_i$. In other words, $\text{ad}(a)(v) = 0$ for any $a \in I$ and any $v \in V_i$. Equivalently, $\text{ad}(a)(x) \in L_{i-1}$ for any $x \in L_i$.

Step 3. By Step 2, $\text{ad}(a)(L_i) \subset L_{i-1}$ for every $a \in I$ and every $i = 1, \ldots, r$. Similarly $\text{ad}(b)(L_i) \subset L_{i-1}$ for $b \in J$. Consequently, $\text{ad}(a + b)(L_i) \subset L_{i-1}$ for every $a \in I$, $b \in J$ and $i = 1, \ldots, r$. We conclude that $\text{ad}(a + b)^r = 0$. Thus $I + J$ is nilpotent by Engel’s Theorem. \square