Problem set 1. Due Monday, September 21.

Assume that the base field is the field of complex numbers \(\mathbb{C} \) throughout.

1. page 5, Problem 3.
2. page 5, Problem 6.
3. page 9, Problem 2. (For \(F = \mathbb{C} \) only.)
4. page 10, Problem 3.

5. Let \(A \) be an arbitrary algebra (not necessarily associative, commutative or Lie), and \(d: A \to A \) be a derivation. Denote by \(d^i \) the composition of \(d \) with itself \((i \) times), here, as usual, \(d^0 = \text{id}_A \). Prove Leibnitz’ identity:

\[
\frac{1}{n!} d^n(xy) = \sum_{i+j=n} \frac{d^i(x)}{i!} \cdot \frac{d^j(y)}{j!}.
\]

Here \(n \geq 0, x, y \) are arbitrary elements of \(A \), \(\cdot \) denotes multiplication in \(A \), and the integers \(i \) and \(j \) on the right hand side are assumed to be non-negative.

6. Show that \(\mathfrak{sl}_n \) is a simple algebra for every \(n \geq 2 \). (The hint to Problem 6 on p. 10 may be helpful here.)