Solution to Problem Set 5, Problem 1(a)

Problem 1(a) Let $A = \begin{pmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} & \cdots & a_{mn} \end{pmatrix}$ be an $m \times n$ matrix with entries in a field F. Consider the m linear polynomials

\[
g_1 = a_{11}x_1 + \cdots + a_{1n}x_n, \\
\vdots \\
g_m = a_{m1}x_1 + \cdots + a_{mn}x_n
\]

in $F[x_1, \ldots, x_n]$. Let E be an echelon form of A and R be a reduced echelon form of A, and $I \subset F[x_1, \ldots, x_n]$ be the ideal generated by g_1, \ldots, g_m. Assume that $I \neq (0)$, i.e., $g_i \neq 0$ for some i. Show that the linear polynomials associated to the non-zero rows of E form a minimal Gröbner basis for I.

Solution: Let h_1, \ldots, h_t be the linear polynomials corresponding to the non-zero rows of E. Clearly $(h_1, \ldots, h_t) = I$. We need to show that h_1, \ldots, h_t form a Gröbner basis for I. Denote the leading term of each h_i by $LT(h_i) = x_k$ (h_i is monic because E is an echelon form). For $i \neq j$, since E is an echelon form, we have $k_i \neq k_j$, and minimality follows.

To show that h_1, \ldots, h_t form a Gröbner basis for I, we use Buchberger’s algorithm. That is, the remainder of dividing $S(h_i, h_j) = x_k h_i - x_k h_j$ by h_i, h_j is zero. I will denote this remainder by $S(h_i, h_j) \mod \{f, g\}$.

For simplicity denote $h_i = f$ and $h_j = g$. Let $\tilde{f} = f - LT(f)$, and $\tilde{g} = g - LT(g)$. Then $S := S(f, g) = (g - \tilde{g})f - (f - \tilde{f})g = \tilde{f}g - \tilde{g}f$. It thus remains to prove the following.

General claim: If $LT(f)$ and $LT(g)$ are co-prime, and $LT(f) > LT(\tilde{f})$, $LT(g) > LT(\tilde{g})$, then $\tilde{f}g - \tilde{g}f \equiv 0 \mod \{f, g\}$.

Proof of the claim: We argue by induction on $t(\tilde{f}, \tilde{g}) = \text{number of terms in } \tilde{f} + \text{number of terms in } \tilde{g}$. The claim is trivial if $\tilde{f} = 0$ or $\tilde{g} = 0$. In particular, this covers the base case, where $t(\tilde{f}, \tilde{g}) = 0$.

For the induction step, we may assume that $\tilde{f}, \tilde{g} = 0$. Now $LT(\tilde{f}g) = LT(\tilde{f})LT(g) \neq LT(\tilde{g})LT(f) = LT(\tilde{g}f)$. Thus $LT(S) = LT(\tilde{f}g)$ or $LT(S) = -LT(\tilde{g}f)$. By symmetry, we may assume that $LT(S) = LT(\tilde{f}g) = LT(\tilde{f})LT(g)$. Subtracting $LT(\tilde{f})g$ from S, we get $S = (\tilde{f} - LT(\tilde{f}))g - \tilde{g}f$. By the induction assumption, $S \equiv 0 \mod \{f, g\}$. □

Remark: In order to conclude that the remainder of $S(h_i, h_j)$ by h_1, \ldots, h_t is zero, it is not enough that $S(h_i, h_j) \in I$. $S(h_i, h_j)$ is always an element of I, even though not every generating set of I is a Gröbner basis.