Problem Set 5. Due Tuesday, March 20.

In Problems 1, 2 and 3 below, F will denote a field.

Problem 1. Let \[A = \begin{pmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} & \cdots & a_{mn} \end{pmatrix} \] be an $m \times n$ matrix with entries in F. Consider the m linear polynomials \[g_1 = a_{11}x_1 + \cdots + a_{1n}x_n, \] \[\vdots \] \[g_m = a_{m1}x_1 + \cdots + a_{mn}x_n \] in $F[x_1, \ldots, x_n]$. Let E be an echelon form of A and R be a reduced echelon form of A, and $I \subset F[x_1, \ldots, x_n]$ be the ideal generated by g_1, \ldots, g_m. Assume that $I \neq (0)$, i.e., $g_i \neq 0$ for some i. Show that

(a) the linear polynomials associated to the non-zero rows of E form a minimal Gröbner basis for I, and

(b) the linear polynomials associated to the non-zero rows of R form a reduced Gröbner basis for I.

(c) Use part (a) to show that the pivot columns in E, i.e., the columns containing leading entries, are uniquely determined by A.

(d) Show that the reduced echelon form R of A is is unique.

Problem 2. Let $I = (g_1, \ldots, g_m) \subset F[x]$. Show that a minimal Gröbner basis for I consists of one element h, where h is the monic generator of I. If $m = 2$, explain how the Euclidean algorithm (which is used to find h from g_1 and g_2) is related to Buchberger’s algorithm.

Remark: In this case there is a unique a minimal Gröbner basis, and this minimal Gröbner basis is automatically reduced.

Problem 3. Let G be the subgroup of the symmetric group S_4 generated by the 2-cycles (12) and (34) and let $R = F[x_1, x_2, x_3, x_4]^G$ be the ring of G-invariant polynomials in four variables. Show that $f_1 = x_1 + x_2$, $f_2 = x_1x_2$, $f_3 = x_3 + x_4$ and $f_4 = x_3x_4$ form a Khovanskii basis (SAGBI) for R with respect to the lexicographic monomial order.

Problem 4. Chapter 3, Exercise 5.

Problem 5. Chapter 3, Exercise 12 (i), (ii), (iii) only.

Problem 6. Chapter 5, Exercise 4. Suggestion: Work out the details for the counterexample suggested in the problem. Start by finding $m = \eta \cap A$ in this example.

Problem 7. Chapter 5, Exercise 6.

Problem 8. Chapter 5, Exercise 7.