Problem Set 4. Due Tuesday, March 6.

Problem 1. Chapter 6, Exercise 1.

Problem 2. We showed in class that if R is a Noetherian ring, then so is the power series ring $R[[x]]$. This is a variant of the Hilbert Basis Theorem. The purpose of this exercise is to give an alternative proof of this result.

(a) Let R be a ring and P be a prime ideal of $R[[x]]$. Let $Q \subset R$ be the set of elements of the form $f(0)$, as $f(x)$ ranges over P. Check that Q is an ideal of R. If Q is generated by n elements as an ideal of R, show that P can be generated by m elements as an ideal of $R[[x]]$, where $m = n$ if $x \not\in P$ and $m = n + 1$, if $x \in P$.

(b) Combine part (a) with Problem 1 to show that if R is Noetherian, then so is $R[[x]]$.

Problem 3. (a) Let R be a Noetherian ring and N be the nilradical of R. Show that there exists a positive integer n such that

$$a_1 \cdots a_n = 0$$

for every $a_1, \ldots, a_n \in N$.

Problem 4. Chapter 7, Exercise 2.

Problem 5. Let F be a field and $F[x, y]$ be a polynomial ring in two variables over F, and $M_i = x^i y \in F[x, y]$. Show that the F-algebra $R = F[M_1, M_2, \ldots]$ of $F[x, y]$ cannot be generated by a finite number of elements (as an F-algebra).

Moral: While ideals of $F[x, y]$ are finitely generated (as ideals), F-subalgebras of $F[x, y]$ do not need to be finitely generated (as F-algebras).

Problem 6. Chapter 7, Exercise 4(i).

Problem 7. Chapter 7, Exercise 8.

Problem 8. Chapter 7, Exercise 10.