Math 342 Midterm 2 syllabus. Spring 2018

The midterm will be held in class on Thursday, March 15. Calculators, laptops, notes, “cheat sheets,” etc. will NOT be allowed.

The midterm will cover Chapters 4-7 in the text. You are also responsible for the preliminary material in Chapters 1-3. Here is a quick summary of the basic concepts.

Linear codes
- A q-ary linear code is a subspace of $V(n,q) = F_q^n$. A q-ary $[n,k,d]$-code is a q-ary linear code of length n and minimal distance $= d$.
- linear dependence / independence
- the span
- spanning set of a linear code
- basis of a linear code
- dimension of a linear code

Matrices over finite fields
- The row space of a matrix.
- Row operations, row echelon form (REF), reduced row echelon form (RREF), standard form.
- Using row reduction/Gaussian elimination to determine linear independence, find a basis.

Generator matrices
- A generator matrix for a linear code is a matrix whose rows form a basis for the code.
- To find a generator matrix from a spanning set for a code: use elementary row operations to find reduced row echelon form and then delete the all-zero rows.
- A generator matrix G for an $[n,k]$-code can be used for encoding arbitrary strings of length k into codewords: $a \mapsto aG$.
- The standard form of a generator matrix for an $[n,k]$-code is a matrix of the form $[I_k|A]$ where I_k is the $k \times k$ identity matrix. Up to equivalence, every linear code has a generator matrix in standard form. The standard form can be constructed from a given generator matrix by elementary row and column operations.

Dual codes and parity check matrices
- For a linear code C in $V(n,q)$, the dual code $C^\perp = \{x \in V(n,q) : x \cdot u = 0 \text{ for every } u \in C\}$.
- The sum of the dimensions of C and C^\perp code is always n.
- A parity check matrix for C is, by definition, a generator matrix for C^\perp.
• A generator matrix G for a linear code C can be transformed to parity check matrix H for C. If G is in standard form $G = [I_k|A]$, then $H = [-A^T|I_{n-k}]$ is a parity check matrix for C.

The minimal distance of a linear code C

• $d(C)$ is the minimal weight of a non-zero word in C (Theorem 5.2).
• $d(C)$ is the minimal number of linearly dependent columns in a parity check matrix for C.

Decoding with a linear code

• Cosets of C.
• A k-dimensional linear code in $V(n, q)$ has q^{n-k} cosets.
• Each coset has q^k words.
• Cosets of Cp partition $V(n, q)$.
• Coset leader is an element of a coset of C with minimum weight.

Standard array

• the array consists of all elements of $V(n, q)$
• each row of the array is a coset of C
• the first row consists of the code itself
• the first column consisting of the coset leaders
• The rows are ordered so that the weights of coset leaders are non-decreasing as you pass from top to bottom

Standard array decoding

• If the received word in y, find y in the standard array.
• Decode y to the top element in its column. Equivalently, subtract from y the coset leader of $y + C$.
• Incomplete standard array decoding: decode a received word y if and only if the coset leader of $y + C$ has weight at most $\lceil (d - 1)/2 \rceil$; otherwise, declare an error.

The syndrome

Let H be a parity check matrix for C.

• The syndrome of a word y in $V(n, q)$ is $S(y) = yH^T$.
• $S(y) = 0$ if and only if $y \in C$.
• More generally, two words are in the same coset if and only if they have the same syndrome.

Syndrome decoding (a more practical version of standard array decoding)

• For a received vector y, compute the syndrome of y
• Find the coset leader e such that $S(e) = S(y)$.
• Decode y as $x = y - e$.