Problem 1. Suppose a parity check matrix for a binary linear code C has 3 rows and 8 columns.

(a) How many words are there in C?
(b) How many words are there in the dual code C^\perp?

Solution: The parity check matrix for C is a generator matrix for C^\perp. Since it has 3 rows, we conclude that $\dim(C^\perp) = 3$. Consequently, $\dim(C) = 8 - 5 = 3$. Thus

(a) $|C| = 2^{\dim(C)} = 2^5 = 32$.
(b) $|C^\perp| = 2^{\dim(C^\perp)} = 2^3 = 8$.

Problem 2. Let $C \subset V(5,3)$ be a ternary linear code of length 5 consisting of words (x_1, \ldots, x_5) satisfying

\begin{align*}
x_1 + x_3 + x_4 + 2x_5 &= 0 \\
2x_1 + 2x_2 + x_3 + 2x_4 + 2x_5 &= 0 \\
2x_1 + x_2 + x_3 + 2x_4 &= 0.
\end{align*}

(Recall that “ternary” means that $q = 3$.)

(a) Find a parity check matrix for C.
(b) Find a generator matrix for C.
(c) Find the minimal distance of C.
(d) Find the minimal distance of the dual code C^\perp.

Solution: (a) A candidate for parity check matrix is given by $H = \begin{bmatrix} 1 & 0 & 1 & 1 & 2 \\ 2 & 2 & 1 & 2 & 2 \\ 2 & 1 & 1 & 2 & 0 \end{bmatrix}$.

We need to check that the rows are linearly dependent. To do this, we row reduce.

Replace R_2 with $R_2 + R_1$ to get

\begin{bmatrix} 1 & 0 & 1 & 1 & 2 \\ 0 & 2 & 2 & 0 & 1 \\ 2 & 1 & 1 & 2 & 0 \end{bmatrix}.

Replace R_3 with $R_1 + R_3$ to get

\begin{bmatrix} 1 & 0 & 1 & 1 & 2 \\ 1 & 0 & 1 & 1 & 2 \\ 0 & 1 & 2 & 0 & 2 \end{bmatrix}.

Replace R_3 with $R_2 + R_3$ to get

\begin{bmatrix} 1 & 0 & 1 & 1 & 2 \\ 0 & 2 & 2 & 0 & 1 \\ 0 & 0 & 1 & 0 & 0 \end{bmatrix}.

Replace R_2 with $2R_2$ to get

\begin{bmatrix} 1 & 0 & 1 & 1 & 2 \\ 0 & 1 & 1 & 1 & 2 \\ 0 & 0 & 1 & 0 & 0 \end{bmatrix}.
Replace R_1 with $R_1 - R_3$ to get
\[
\begin{bmatrix}
1 & 0 & 0 & 1 & 2 \\
0 & 1 & 1 & 0 & 2 \\
0 & 0 & 1 & 0 & 0
\end{bmatrix}.
\]

Replace R_2 with $R_2 - R_3$ to get
\[
\begin{bmatrix}
1 & 0 & 0 & 1 & 2 \\
0 & 1 & 0 & 0 & 2 \\
0 & 0 & 1 & 0 & 0
\end{bmatrix} = H'.
\]

H' is the Reduced Row Echelon Form for H. Since H' has no zero rows, the row space of H is 3-dimensional. Thus the rows of H are linearly independent (if they were dependent, the row space for H would be at most 2-dimensional.)

(b) Since H' is a parity check matrix in standard form for C (or equivalently, a generator matrix for C^\perp), we can use it to get a generator matrix for $(C^\perp)^\perp = C$.

\[
G = \begin{bmatrix}
-1 & 0 & 0 & 1 & 0 \\
-2 & -2 & 0 & 0 & 1
\end{bmatrix} = \begin{bmatrix}
2 & 0 & 0 & 1 & 0 \\
1 & 1 & 0 & 0 & 1
\end{bmatrix}.
\]

Quick Check: The rows of G must be orthogonal to that of H.

(c) To find minimal distance in C we need to look at the columns of its parity check matrix H. Since there is no zero column we know $d(C) > 1$. On the other hand there are two linearly dependent columns (the first and fourth column are equal) so $d(C) \leq 2$. We conclude that $d(C) = 2$.

(d) For finding minimal distance in C^\perp we look at the columns of its parity check matrix G. Since there is a zero column (third column) we deduce $d(C^\perp) = 1$.

Problem 3. Suppose C is a binary linear code code of length 5. A coset of C is given by

\[(1, 0, 0, 0, 0), (0, 0, 0, 1, 1), (1, 1, 0, 1, 0), (0, 1, 0, 0, 1), (1, 0, 1, 0, 1), (0, 0, 1, 1, 0), (1, 1, 1, 1, 1), (0, 1, 1, 0, 0).\]

Find a generator matrix for C. Explain your answer.

Solution: The above coset is $(1, 0, 0, 0, 0) + C$. So in order to find C we subtract $(1, 0, 0, 0, 0)$ from each word in the coset. We deduce the code C consists of the following 8 words:

\[(0, 0, 0, 0, 0), (1, 0, 0, 1, 1), (0, 1, 0, 1, 0), (1, 1, 0, 0, 1), (0, 0, 1, 0, 1), (1, 0, 1, 1, 0), (0, 1, 1, 1, 1), (1, 1, 1, 0, 0).\]

Since all cosets are of the same size and the coset containing $(0, 0, 0, 0, 0)$ is C, we deduce that

\[|C| = 8 = 2^3.\]

Thus a generator matrix for C is a 3×5 matrix. The rows of these matrix can be any 3 linearly independent words in C. Among many choices, one is the following

\[(1, 0, 0, 1, 1), (0, 1, 0, 1, 0), (0, 0, 1, 0, 1).\]
This gives rise to the matrix
\[
G = \begin{bmatrix}
1 & 0 & 0 & 1 & 1 \\
0 & 1 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 1
\end{bmatrix}.
\]

Since \(G \) is in standard form, its rows are linearly independent, so \(G \) is a parity check matrix for \(C \).

Problem 4. A \(q \)-ary linear code \(C \subset V(n, q) \) of length \(n \) is called self-dual if \(C = C^\perp \).

(a) If there exists a self-dual code \(C \) of length \(n \), then \(n \) is even and \(\dim(C) = \frac{n}{2} \).

(b) Give an example of a self-dual binary code of length 2.

(c) Use part (b) to construct an example of a self-dual binary code of length 4.

(d) Use parts (b) and (c) to show that for every integer \(m \geq 1 \) there exists a self-dual binary code of length \(2m \).

Solution: (a) Since \(\dim(C) + \dim(C^\perp) = n \) and \(\dim(C) = \dim(C^\perp) \) we have \(2 \dim(C) = n \). Thus \(n \) is even and \(\dim(C) = \frac{n}{2} \).

(b) From part (a) we know \(\dim(C) = 2 \frac{2}{2} = 1 \). The word \((1, 1)\) is orthogonal to itself, so its span, \(\{(0, 0), (1, 1)\} \) is self-dual. (Check!).

Remark: How could we have arrived at this answer? As \(C \) is a 1-dimensional subspace of \(V(2, 2) = \{(0, 0), (1, 0), (0, 1), (1, 1)\} \), there are only 3 possibilities: \(C \) is the span of \(v \), where \(v = (1, 0) \) or \((0, 1) \) or \((1, 1) \). But \((1, 0)\) is not orthogonal to itself, and neither is \((0, 1)\).

(c) We extend the previous example by choosing \(C \) to be generated by \((1, 1, 0, 0)\) and \((0, 0, 1, 1)\). Any vector \((a, b, c, d)\) orthogonal to \((1, 1, 0, 0)\) must have \(a = b \) and orthogonal to \((0, 0, 1, 1)\) must have \(c = d \). But then \((a, a, c, c)\) lies in \(C \). Consequently \(C = C^\perp \).

Alternately, another self-dual code is given by generators \((1, 0, 1, 0)\) and \((0, 1, 0, 1)\).

(d) We argue by induction on \(m \). If \(C \) is a binary self-dual linear code of length \(2m \), we can create a binary self-dual linear code \(C' \) of length \(2(m + 1) \) as follows. For every word \(x = (x_1, \ldots, x_{2m}) \) in \(C \), create two words, \((x_1, \ldots, x_{2m}, 0, 0)\) and \((x_1, \ldots, x_{2m}, 1, 1)\). The code \(C' \) obtained in this way is readily checked to be self-dual.

An alternative way to describe the code \(C \) of length \(2m \) resulting from this construction is by the \(m \times 2m \) generating matrix \(G = \begin{bmatrix}
1 & 1 & 0 & 0 & \cdots & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 & \cdots & 0 & 0 & 0 & 0 \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \vdots \\
0 & 0 & 0 & 0 & \cdots & 1 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & \cdots & 0 & 0 & 1 & 1
\end{bmatrix} \). Every word in \(C \) is of the form \((a_1, a_1, a_2, a_2, \ldots, a_m, a_m)\) where \(a_1, \ldots, a_m \) range over \(F_2 \). To see that this code is self-dual, note that \(x = (x_1, x_2, \ldots, x_{2m-1}, x_{2m}) \) lies in \(C^\perp \) if and only if \(x \) is orthogonal to every row of \(G \) if and only if \(x_1 = x_2, x_3 = x_4, \ldots, x_{2m-1} = x_{2m} \) if and only if \(x \in C \).
An alternative self-dual code (same up to column permutation) is given by the generating matrix \(G = [I_m \mid I_m] \).

Problem 5. Let \(C \) be the binary linear code of length 5 with parity check matrix

\[
H = \begin{pmatrix}
1 & 1 & 1 & 0 & 0 \\
0 & 1 & 1 & 1 & 0 \\
0 & 0 & 1 & 1 & 1
\end{pmatrix}.
\]

(a) Write out the coset of \(C \) containing \((0, 0, 1, 1, 1)\).
(b) Suppose a word \(x \) from \(C \) was received as \(y = (1, 0, 1, 0, 0) \). Find \(x \) using syndrome decoding.

Solution:
(a) We will use row operations to reduce \(H \) to standard form. Replace \(R_2 \) with \(R_2 + R_3 \) to get

\[
\begin{pmatrix}
1 & 1 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 & 1 \\
0 & 0 & 1 & 1 & 1
\end{pmatrix}
\]

Replace \(R_1 \) with \(R_1 + R_2 \) to get

\[
\begin{pmatrix}
1 & 0 & 1 & 0 & 1 \\
0 & 1 & 0 & 0 & 1 \\
0 & 0 & 1 & 1 & 1
\end{pmatrix}
\]

Replace \(R_1 \) with \(R_1 + R_3 \) to get

\[
\begin{pmatrix}
1 & 0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 & 1 \\
0 & 0 & 1 & 1 & 1
\end{pmatrix}
\]

So a generator matrix is given by

\[
G = \begin{pmatrix}
1 & 0 & 1 & 1 & 0 \\
0 & 1 & 1 & 0 & 1
\end{pmatrix}
\]

Taking linear combinations of the rows of \(G \), we see that

\[
C = \{(0, 0, 0, 0, 0), (1, 0, 1, 1, 0), (0, 1, 1, 0, 1), (1, 1, 0, 1, 1)\}
\]

The coset containing \((0, 0, 1, 1, 1)\) is \((0, 0, 1, 1, 1) + C\) i.e.

\[
(0, 0, 1, 1, 1), (1, 0, 0, 0, 1), (1, 1, 0, 1, 0), (1, 1, 1, 0, 0)
\]

(b) All syndromes will be calculated with respect to matrix \(H \) as given in the problem. We have \(S(y) = (0, 1, 1) \).
We see that syndrome of \(y \) is the same as the syndrome of \((0,0,0,1,0)\) and that no other word of weight \(\leq 1 \) has this syndrome. Consequently we decode as \(x = y - e = (1,0,1,0,0) - (0,0,0,1,0) = (1,0,1,1,0) \).