Binomial coefficients

\[\binom{n}{i} \] is the number of unordered selections of \(i \) elements out of a set of \(n \) elements.

Examples: (1) \(\binom{n}{n} = 1 \), (2) \(\binom{n}{1} = n \), (3) \(\binom{n}{n-1} = n \).

Exercise: Prove these.

Proposition: \(\binom{n}{i} = \frac{n!}{i!(n-i)!} = \frac{n(n-1) \ldots (n-i+1)}{i!} \).

Proof. First count the number of ordered selections of \(i \) elements from \(\{1, \ldots, n\} \). There are

\[n \text{ ways to choose the first element, } n-1 \text{ ways to choose the second element, } \ldots, (n-i+1) \text{ ways to choose the } i \text{th element.} \]

All in all, we obtain \(n(n-1) \ldots (n-i+1) = \frac{n(n-1) \ldots (n-i+1)}{i!} \) ordered selections.

Now given a selection of \(i \) elements out of \(n \), there are \(i! \) ways to order these \(i \) elements. Thus each unordered selection corresponds to exactly \(i! \) ordered selections. In other words,

\[\text{Number of unordered selections} = \frac{\text{Number of ordered selections}}{i!}, \]

and the proposition follows. \(\square \)

Proposition: Let \(\overline{x} = (x_1, \ldots, x_n) \) be a word in \(F_q^n \). Then the number of words \(\overline{y} = y_i = (y_1, \ldots, y_n) \) such that \(d(\overline{x}, \overline{y}) = r \) is

(a) \(\binom{n}{r} \), if \(q = 2 \), and more generally,
(b) \((q - 1)^r \binom{n}{r}\) for arbitrary \(q \geq 2\).

Proof. (a) \(\overline{y}\) is completely determined by the choice of \(r\) positions where it differs from \(\overline{x}\). If \(i\) is one of those positions, then \(y_i\) is uniquely determined by the requirement that \(y_i\) should be different from \(x_i\): if \(x_i = 1\), then \(y_i = 0\) and if \(x_i = 0\), then \(y_i = 1\). Thus the number of \(\overline{y}\) at distance \(r\) from \(\overline{x}\) is the number of ways to choose \(r\) positions out of \(n\). This number is, by definition, \(\binom{n}{r}\).

(b) \(\overline{y}\) is completely determined by the choice of \(r\) positions where it differs from \(\overline{x}\) and the \(r\) elements that are used to fill these \(r\) positions. If \(i\) is one of these positions, then \(y_i\) can be any element of \(F_q\), other than \(x_i\). there are \(q - 1\) such choices. Thus the number of \(\overline{y}\) at distance \(r\) from \(\overline{x}\) is \((q - 1)^r \binom{n}{r}\). \(\square\)

Binomial coefficients appear in just about every area of mathematics. There are many intricate identities involving them. Here is a small sample.

(1) \(\binom{n}{i} = \binom{n}{n-i}\).

(2) \(\binom{n}{0} + \binom{n}{1} + \ldots + \binom{n}{n} = 2^n\).

(3) \(\binom{n}{i} = \binom{n-1}{i} + \binom{n}{i}\).

Can you prove these?

The Hamming Bound
Recall that the Hamming ball of radius r centered at a word \overline{x} in F_q^n is

$$B_r(\overline{x}) = \{ \overline{y} \in F_q^n : d(\overline{x}, \overline{y}) \leq r \}$$

Note that $B_r(\overline{x})$ depends on r, \overline{x}, q, n but we suppress dependence on q, n in the notation.

Example: $q = 2, n = 3 : B_1(000) = \{000, 100, 010, 001\}$

$B_2(100) = \{100, 000, 110, 101, 011, 001, 111\}$

For arbitrary q, n, $B_n(\overline{x}) = F_q^n$.

Let us now compute the “volume” of (i.e., the number of words in) the Hamming ball.

Proposition:

$$|B_r(\overline{x})| = \sum_{m=0}^{r} \binom{n}{m} (q-1)^m$$

Proof.

$$|B_r(\overline{x})| = \sum_{m=0}^{r} |\{ \overline{y} \in F_q^n : d(\overline{x}, \overline{y}) = m \}|$$

and each word $\overline{y} \in F_q^n$ s.t. $d(\overline{x}, \overline{y}) = m$ is uniquely determined by the m locations in which \overline{x} and \overline{y} differ and for each such location a choice of $q - 1$ symbols. □

Note that the volume of $B_r(\overline{x})$ depends only on n, q and r but not on \overline{x}. We will sometimes abbreviate $B_r(\overline{x})$ by B_r.

Special case: $q = 2$:

$$|B_r(\overline{x})| = \sum_{m=0}^{r} \binom{n}{m}.$$

Theorem (Hamming Bound or sphere-packing bound): Let $t \geq 1$.

$$A_q(n, 2t + 1) \leq \left\lfloor \frac{q^n}{\sum_{m=0}^{t} \binom{n}{m} (q - 1)^m} \right\rfloor$$
Proof: Let \(C \) be an \((n, M, 2t + 1)\) code over \(F_q \). Then \(\{B_t(\bar{c}) : \bar{c} \in C\} \) are pairwise disjoint. Thus,

\[
M \cdot |B_t| = |C| \cdot |B_t| = | \cup_{\bar{c} \in C} B_t(\bar{c}) | \leq |F^n| = q^n
\]

Thus,

\[
M \leq \frac{q^n}{\sum_{m=0}^{t} \binom{n}{m} (q - 1)^m}
\]

If \(C \) is a code that achieves \(A_q(n, 2t+1) \), then we get the bound. \(\square \)

Remark: The Hamming bound applies only to odd \(d = 2t + 1 \), or equivalently, to \(t \)-error-correcting codes. However, for binary codes it also gives an upper bound for \(A_2(n, d) \) for even \(d \), using the identity \(A_2(n, d) = A_2(n-1, d-1) \).

Perfect codes

A \(q \)-ary \((n, M, 2t + 1)\)-code \(C \) is called perfect if it meets the Hamming bound, i.e., if

\[
|C| = \frac{q^n}{\sum_{m=0}^{t} \binom{n}{m} (q - 1)^m}.
\]

In other words, \(|C||B_t| = |F^n| \). This means that the Hamming balls of radius \(t \) centered at the codewords of \(C \) form a partition of \(F_q^n \), i.e., they are pairwise disjoint and their union is all of \(F_q^n \).

Note that a necessary condition for a \(q \)-ary \((n, M, d)\)-code to be perfect is that \(d \) should be odd, \(d = 2t + 1 \), and expression \(\frac{q^n}{\sum_{m=0}^{t} \binom{n}{m} (q - 1)^m} \) should be an integer. (These necessary conditions may not be sufficient!)
A perfect code is very convenient for decoding, because every received codeword \(\overline{y} \) lies in exactly one of these balls \(B_t(\overline{x}) \), with \(\overline{x} \) is in \(C \): we decode \(\overline{y} \) as \(\overline{x} \). Unfortunately, perfect codes are rare.

Example: Let us take a closer look at perfect codes \(q = 2, t = 1 \). Then a code \(C \) is perfect iff:

\[
|C| = \frac{2^n}{1 + n}
\]

A necessary condition for this is that right hand side (RHS) must be an integer. This means that \(n = 2^\ell - 1 \) for some \(\ell \). So, the only possibilities are \(n = 3, 7, 15, 31, \ldots \) (\(n = 1 \) is too small). As we shall see later in the course, these are all achievable.

Question: Which bound is better, Hamming or Singleton?

I will address this question at the beginning of the next lecture.