Solutions to Problem Set 2.

(1) Show that if there exists a \(q \)-ary \((n, M, d)\)-code for some \(2 \leq d \leq n \), then there exist a \(q \)-ary \((n, M, d-1)\)-code.

Solution: We will start with a \(q \)-ary \((n, M, d)\)-code \(C \) and construct a \(q \)-ary \((n, M, d-1)\)-code \(C' \).

Choose \(a = (a_1, \ldots, a_n) \) and \(b = (b_1, \ldots, b_n) \) in \(C \) such that \(d(a, b) = d \) is the smallest possible. That is, \(a \) and \(b \) differ in exactly \(d \) positions. Suppose one of these \(d \) positions is position \(i \), i.e., \(a_i \neq b_i \). Modify \(a \) by replacing \(a_i \) by \(b_i \). Denote the resulting word by \(a' \). Clearly

\[
(d(a', b)) = d - 1.
\]

Let \(C' \) be the code obtained by changing \(a \) to \(a' \) and leaving the remaining words in \(C \) unchanged. Then \(C' \) has the same number of words as \(C \). It remains to show that \(d(C') = d - 1 \).

First note that \(d(C') \leq d - 1 \) by \((*)\); this was, in fact, the entire point of replacing \(a \) by \(a' \). Thus we only need to show that

\[
d(C') \geq d - 1,
\]

i.e., \(d(x, y) \geq d - 1 \) for any distinct words \(x \) and \(y \) in \(C' \). Indeed, if neither of these words is \(a' \), then both \(x \) and \(y \) are words in \(C \). Thus

\[
d(x, y) \geq d(C) = d > d - 1,
\]

as desired. On the other hand, if one of these words in \(a' \), say, \(x = a' \), then by the triangle inequality,

\[
d \leq d(a, y) = d(a, a') + d(a', y) = 1 + d(x, y).
\]

Subtracting 1 from both sides, we obtain

\[
d - 1 \leq d(x, y).
\]

This shows that \(d(C') = d - 1 \).

(2) What is \(A_2(n+1, n) \)? Consider every integer \(n \geq 1 \).

Solution: We have shown in class that \(A_2(n+1, 1) = 2^{n+1} \) and \(A_2(n+1, 2) = 2^n \). This takes care of \(n = 1 \) and \(n = 2 \):

\[
A_2(2, 1) = A_2(3, 2) = 2^2 = 4.
\]

From now on, assume \(n \geq 3 \). I claim that in this case \(A_2(n+1, n) = 2 \). Clearly \(A_2(n+1, n) \geq 2 \), since the 2-word code \(\{(0, \ldots, 0, 0), (1, \ldots, 1, 0)\} \) of length \(n+1 \) has minimal distance \(n \). It thus remains to prove that \(A_2(n+1, n) \geq 2 \), i.e., a code \(C \) of length \(n+1 \) and minimal distance \(\geq n \) cannot have more than two words. We will prove this in two ways.
1. Apply the Plotkin bound:

\[A_2(n + 1, n) \leq 2 \cdot \left\lfloor \frac{n}{2n - (n + 1)} \right\rfloor = 2 \cdot \left\lfloor \frac{n}{n - 1} \right\rfloor = 2 \cdot \left\lfloor 1 + \frac{1}{n - 1} \right\rfloor = 2. \]

Note that \(\frac{1}{n - 1} < 1 \) for any \(n \geq 3 \).

2. Use a direct argument. After replacing \(C \) by an equivalent code, we may assume that \(C \) contains \(\textbf{0} = (0, \ldots, 0) \). Any other word \(\textbf{x} \) in \(C \) will have weight (i.e., distance from \(\textbf{0} \)) \(\geq n \). Equivalently, \(d(\textbf{x}, \textbf{1}) \leq 1 \), where \(\textbf{1} \) is the all-one word \((1, 1, \ldots, 1) \). If \(C \) has two non-zero words, say \(\textbf{x} \) and \(\textbf{y} \), then by the triangle inequality

\[d(\textbf{x}, \textbf{y}) \leq d(\textbf{x}, \textbf{1}) + d(\textbf{1}, \textbf{y}) \leq 1 + 1 = 2 \leq n, \]

a contradiction. (Recall that we are assuming that \(n \geq 3 \).) This shows that \(C \) cannot have more than two words.

(3) In each case construct, if possible, a binary \((n, M, d)\)-code. If no such code exists, explain why. You can use any of the coding bounds we have covered in class.

(a) \((n, M, d) = (7, 2, 7)\),
(b) \((n, M, d) = (5, 3, 4)\),
(c) \((n, M, d) = (6, 4, 4)\),
(d) \((n, M, d) = (4, 8, 2)\),
(e) \((n, M, d) = (8, 29, 3)\).

Solution:

(a) The repetition code \(\{(0000000), (1111111)\}\) is a binary \((7, 2, 7)\)-code.

(b) \(\{(00000), (11100), (00111), (11011)\}\) is a binary \((5, 3, 4)\)-code.

(c) Add a parity check digit to the code in part (c):

\[\{(0000000), (1111000), (0011111), (1100111)\}\]

is a binary \((6, 4, 4)\)-code.

(d) The binary parity check code consisting of all words of length 4 of even weight,

\[\{(0000), (0011), (0101), (0110), (1001), (1010), (1100), (1111)\},\]

is a binary \((4, 8, 2)\)-code.

(e) Impossible by the Hamming bound, since \(\frac{2^8}{1 + 8} = 28.444 \ldots < 29\).

(4) Without using a computer, a calculator, or Fermat’s theorem, find the following principal remainders.

(a) \(513418^{100000} \pmod{17}\),
(b) \(99^{101} \pmod{31}\),
(c) \(263912^{20111} \pmod{13}\).

Solution:

(a) \(513418 \equiv 51 \cdot 10^4 + 34 \cdot 10^2 + 18 \equiv 1 \pmod{17}\). Thus \(513418^{100000} \equiv 1^{100000} \equiv 1 \pmod{17}\).
(b) $99 \equiv 6 \pmod{31}$. On the other hand, $6^2 \equiv 36 \equiv 5 \pmod{31}$ and thus $6^3 \equiv 5 \cdot 6 \equiv -1 \pmod{31}$. We conclude that

$$99^{101} \equiv 6^{101} \equiv (6^3)^{33} \cdot 6^2 \equiv (-1)^{33} \cdot 36 \equiv -5 \equiv 26 \pmod{31}.$$ (c) Since $263912 \equiv 26 \cdot 10^4 + 39 \cdot 10^2 + 12 \equiv -1 \pmod{13}$, we have

$$263912^{20111} \equiv (-1)^{20111} \equiv -1 \equiv 12 \pmod{13}.$$ (5) Use the Euclidean algorithm to find $15^{-1} \pmod{37}$.

Solution:

We perform the Euclidean algorithm on the pair $(15, 7)$:

$$37 = 15 \cdot 2 + 7,$$
$$15 = 7 \cdot 2 + 1.$$ Back substitution:

$$1 = 15 - (37 - 15 \cdot 2) \cdot 2 = 15 \cdot 5 - 37 \cdot 3.$$ Reducing both sides modulo 37, we see that $1 \equiv 15 \cdot 5 \pmod{37}$. Thus $15^{-1} \equiv 5 \pmod{37}$.

(6) Let $\gcd(a, b, c)$ denotes the greatest common divisor of three integers a, b, c. Let us assume that $a > 0$.

(a) Show that $\gcd(a, b, c) = \gcd(\gcd(a, b), c)$.

(b) Explain why there exist integers x, y, z such that $ax + by + cz = \gcd(a, b, c)$ and how to find them using the Euclidean algorithm.

(c) Use your method to find integers x, y, z such that $15x + 10y + 6z = 1$.

Solution: (a) It is enough to show that (a, b, c) have the same common divisors as $(\gcd(a, b), c)$.

Suppose d divides both $\gcd(a, b)$ and c. Then clearly d divides a, b and c.

Conversely, suppose e divides a, b, c. Then since $\gcd(a, b)$ can be written as $sa + tb$, for some integers s and t, e also divides $\gcd(a, b)$. Thus e divides both $\gcd(a, b)$ and c.

We have thus shown that that (a, b, c) and $(\gcd(a, b), c)$ have the same common divisors. Hence, they also have the same greatest common divisor.

(b) First we find integers s and t so that $as + bt = \gcd(a, b)$. This can be done using the Euclidean algorithm and back substitution, as in Problem 5 above. Then, in a similar manner, we find integers v and z so that $\gcd(a, b)v + cz = \gcd(\gcd(a, b), c)$. Now $\gcd(a, b, c) = \gcd(\gcd(a, b), c) = \gcd(a, b)v + cw = (as + bt)v + cz = a(sv) + b(tv) + cz$.

(c) Here $\gcd(15, 10) = 5$ and $\gcd(5, 6) = 1$. We write $5 = 15 - 10$ and $1 = 6 - 5$.

Now

$$1 = 6 - 5 = 6 - (15 - 10) = 15 \cdot (-1) + 10 \cdot 1 + 6 \cdot 1.$$ \[\square\]
(7) Show that the congruence $x^2 \equiv 1 \pmod{n}$ has exactly two solutions, $x \equiv -1$, and $x \equiv 1 \pmod{n}$, assuming that $n = p$ is an odd prime number. (Here we do not distinguish between solutions that are congruent modulo n. For example, if $n = 3$ then $x = 1$ and $x = 4$ are considered the same.)

Solution: Rewrite $x^2 \equiv 1 \pmod{n}$ as $x^2 - 1 \equiv (x - 1)(x + 1) \equiv 0 \pmod{n}$. Since \mathbb{Z}_n is a field if n is prime we have $ab = 0$ implies $a = 0$ or $b = 0$. In our case this means that $x - 1 \equiv 0 \pmod{n}$ or $x + 1 \equiv 0 \pmod{n}$; in other words $x \equiv 1$ or $x \equiv -1$. Note that these two solutions are distinct if $n > 2$. There’s only one, $x = 1$ for $n = 2$.

(8) (a) Use Problem 7 to show that $(p - 1)! \equiv -1 \pmod{p}$ for every prime number p. (This congruence is called Wilson’s theorem.)

Solution: (a) For $p = 2$ the identity is clear $1! = 1 \equiv -1 \pmod{2}$. Now suppose $p \geq 3$. Since we are working over a field, each element has a unique inverse. By (a) the only elements that are their own inverses are $x \equiv 1$ or $x \equiv -1$. Changing the order of the factors and grouping pairs of inverses gives us $(p - 1)! \equiv (1)(1)(1)(1) \cdots (1)(-1) \equiv -1 \pmod{n}$.

(b) Show by example that Wilson’s theorem may fail if n is not a prime.

Solution: (b) Suppose $n = ab$ for some integers $2 \leq a, b \leq n - 1$. Then $(n - 1)!$ is divisible by a; hence, can never be $-1 \pmod{n}$. For example, for $n = 4$, $(n - 1)! = 3! = 1 \cdot 2 \cdot 3 \equiv 2 \pmod{4}$.