Math 342. Notes for Lecture 8. January 30, 2018

Modular arithmetic

Recall that $a_1 \equiv a_2 \pmod{n}$ if a_1 and a_2 have the same remainder when divided by n. Equivalently, $a_1 \equiv a_2 \pmod{n}$ if $a_2 - a_1$ is divisible by n.

For example, $99 \equiv 6 \pmod{31}$ and $6 \equiv -2 \pmod{4}$.

We showed that if $a_1 \equiv a_2 \pmod{n}$ and $b_1 \equiv b_2 \pmod{n}$, then $a_1 + b_1 \equiv a_2 + b_2 \pmod{n}$, $a_1 - b_1 \equiv a_2 - b_2 \pmod{n}$, and $a_1 b_1 \equiv a_2 b_2 \pmod{n}$.

Example: $49 \cdot 48 \equiv 4 \cdot 3 \equiv 12 \equiv 2 \pmod{5}$.

Another example: Using $521 \equiv 1 \pmod{5}$, $10234 \equiv 4 \equiv -1 \pmod{5}$, and $723 \equiv 3 \equiv -2 \pmod{5}$, we obtain

$$521^{1000} + 10234^{500} \cdot 723^{4} \equiv 1^{1000} + (-1)^{500} \cdot (-2)^{4} \equiv 1 + 1 \cdot 16 \equiv 1 \pmod{5}.$$

Remark: If $d \equiv e \pmod{n}$, we cannot conclude that $a^d \equiv a^e \pmod{n}$. For example, $1 \equiv 4 \pmod{3}$ but

$$2^1 \not\equiv 2^4 \pmod{3}.$$

Indeed, $2^1 \equiv 2 \pmod{3}$ and $2^4 \equiv 16 \equiv 1 \pmod{5}$.

The Euclidean algorithm

Defn: Let a and b be positive integers. The greatest common divisor of a and b (written gcd(a,b), or sometimes (a,b)) is the largest integer which is a divisor of a and b.

Example: gcd$(30, 45) = 15$, gcd$(30, 49) = 1$.

The Euclidean Algorithm is an efficient method for finding the gcd.
Lemma: $\gcd(a, b) = \gcd(a - qb, b)$ for any integer n.

Proof: The common divisors of a and b are the same as the common divisors of $a + nb$ and b. (Check!) Thus the greatest common divisor is the same. \hfill \Box

The Euclidean algorithm applies the above lemma recursively. We arrange a, b so that $a \geq b$ and $b > 0$. Divide a by b with remainder r.

Each subsequent step consists of replacing (a, b) by (b, r).

This does not change the gcd, and both a and b become smaller. Continue as long as the second number remains positive. Stop when $r = 0$. At this point $\gcd(b, r) = \gcd(b, 0) = b$, and we are done.

Example 1: $a = 154, b = 35$. Euclidean algorithm:

$\begin{align*}
154 &= 4 \cdot 35 + 14 \\
35 &= 2 \cdot 14 + 7 \\
14 &= 2 \cdot 7 + 0.
\end{align*}$

Conclusion: $\gcd(154, 35) = 7$.

Example 2: $a = 553, b = 327$. Euclidean algorithm:

$\begin{align*}
553 &= 1 \cdot 327 + 226 \\
327 &= 1 \cdot 226 + 101 \\
226 &= 2 \cdot 101 + 24 \\
101 &= 4 \cdot 24 + 5 \\
24 &= 4 \cdot 5 + 4 \\
5 &= 1 \cdot 4 + 1 \\
4 &= 1 \cdot 4 + 0.
\end{align*}$

Conclusion: $\gcd(553, 327) = 1$.

Bezout’s equation
We will now use the Euclidean algorithm to “quickly” find an integer solution to the equation $ax + by = \gcd(a, b)$ for any given pair of integers $a \geq b > 0$.

In particular, we will see that this equation always has a solution.

Set

$$r_{-1} = b, \quad r_0 = a$$

$$r_{-1} = r_0 q_0 + r_1, \quad 0 \leq r_1 < r_0$$

$$r_0 = r_1 q_1 + r_2, \quad 0 \leq r_2 < r_1$$

$$r_1 = r_2 q_2 + r_3, \quad 0 \leq r_3 < r_2$$

$$\ldots$$

$$r_{i-1} = r_i q_i + r_{i+1}, \quad 0 \leq r_{i+1} < r_i$$

$$\ldots$$

$$r_{j-2} = r_{j-1} q_{j-1} + r_j, \quad 0 \leq r_j < r_{j-1}$$

$$r_{j-1} = r_j q_j$$

Here $\gcd(a, b) = r_j$. First we express it as a linear combination of r_{j-1} and r_{j-2} with integer coefficients, using the second to last equation,

$$\gcd(a, b) = r_j = r_{j-2} - q_{j-1} r_{j-1}.$$

Now we use the next equation, $r_{j-3} = q_{j-2} r_{j-2} + r_{j-1}$ to eliminate r_{j-1} and express $\gcd(a, b)$ as a linear combination of r_{j-3} and r_{j-2}. Continue until $\gcd(a, b)$ is expressed as an integer linear combination of $r_{-1} = a$ and $r_0 = b$.

Back to Example 1: Solve $154x + 35y = 7$. Euclidean algorithm:

$$154 = 4 \cdot 35 + 14$$

$$35 = 2 \cdot 14 + 7$$

$$14 = 2 \cdot 7 + 0.$$
Back substitution:

\[7 = 35 - 2 \cdot 14 = 35 - 2 \cdot (154 - 4 \cdot 35) = 35 - 2 \cdot 154 + 8 \cdot 35 = (-2) \cdot 154 + 9 \cdot 35. \]

Integer solution to \(154x + 35y = 7 \): \(x = -2, \ y = 9 \).

Back to Example 2: \(a = 553, b = 327 \). Euclidean algorithm:

\[
egin{align*}
553 &= 1 \cdot 327 + 226 \\
327 &= 1 \cdot 226 + 101 \\
226 &= 2 \cdot 101 + 24 \\
101 &= 4 \cdot 24 + 5 \\
24 &= 4 \cdot 5 + 4 \\
5 &= 1 \cdot 4 + 1 \\
4 &= 1 \cdot 4 + 0.
\end{align*}
\]

Solve \(553x + 327y = 1 \) by back substitution:

\[
\begin{align*}
1 &= (1 \cdot 5) + (-1 \cdot 4) = (-1 \cdot 24) + (5 \cdot 5) = (5 \cdot 101) + (-21 \cdot 24) \\
&= (-21 \cdot 226) + (47 \cdot 101) = (47 \cdot 327) + (-68 \cdot 226) = (-68 \cdot 553) + (115 \cdot 327)
\end{align*}
\]

Solution: \(x = -68, \ y = 115 \).

Bezout’s Theorem: Let \(a, b \) and \(c \) be integers, \((a, b) \neq (0, 0) \). The equation \(ax + by = c \) has an integer solution \(x, y \) if and only if \(c \) is divisible by \(\gcd(a, b) \).

Proof. Denote \(\gcd(a, b) \) by \(d \). If \(c \) is divisible by \(d \), then, as we just saw, we can find integers \(x_0 \) and \(y_0 \) such that \(ax_0 + by_0 = d \). Now \(x = \frac{c}{d}x_0 \) and \(y = \frac{c}{d}y_0 \) are integer solutions of \(ax + by = c \) (Check!).

Conversely, since \(d \) divides both \(a \) and \(b \), it divides \(ax + by \), for any integers \(x \) and \(y \). Thus if \(c \) is not divisible by \(d \), then \(ax + by \) can never be equal to \(c \), for any integers \(x \) and \(y \). \(\square \)
Multiplicative inverses mod n

To find the multiplicative inverse of a in \mathbb{Z}_n means to find an integer x such that $ax \equiv 1 \pmod{n}$. This means finding integers x and y such that $ax - ny = 1$.

Theorem: (1) a has a multiplicative inverse in \mathbb{Z}_n if and only if $\gcd(a, n) = 1$.

(2) \mathbb{Z}_n is a field if and only if n is a prime.

Proof: (1) If $\gcd(a, n) = 1$, we just saw that $ax - ny = 1$ has an integer solution. Conversely, if $\gcd(a, n) = d > 1$, then any integer linear combination $ax - ny$ will be divisible by d. Hence, in this case $ax - ny$ can never be 1.

(2) If n is a prime, then for every $a = 1, \ldots, p - 1$, $\gcd(a, n) = 1$. Hence, every non-zero a in \mathbb{Z}_n has a multiplicative inverse. Since we already know that \mathbb{Z}_n is a ring for any n, this shows that it is a field when n is a prime.

On the other hand, suppose n is not a prime, say $n = km$, where $k, m > 1$ are integers. Then $\gcd(k, n) = k > 1$. Hence, k is not invertible in \mathbb{Z}_n. \qed