Math 342 Midterm 2 syllabus.
Spring 2018

The midterm will be held in class on Thursday, March 15. Calculators, laptops, notes, “cheat sheets,” etc. will NOT be allowed.

The midterm will cover Chapters 1-7 in the text, excluding the material on block designs in Chapter 2 and on the probability of correction/detection in Chapter 6. The emphasis will be on the topics covered after Midterm 1. Here is a quick summary of these topics.

Linear algebra basics

Definition, first properties and examples of vector spaces (particularly over finite fields).

Subspaces. A linear code is a subspace of $V(n, q) = F_q^n$

Basic concepts in linear algebra

• linear independence
• linear dependence
• spanning set,
• basis
• dimension

Some facts about these concepts, such as

• any spanning set of a subspace contains a basis for the subspace (Theorem 4.2)
• any element of a subspace can be expressed as a unique linear combination of a basis for the subspace (Theorem 4.3(i))
• any subspace of $V(n, q)$ has size q^k for some $0 \leq k \leq n$ (Theorem 4.3(ii))
• all bases for the same subspace have the same size, namely q^k where k is the dimension of the subspace.

Matrices over finite fields. The row space of a matrix.

• Row operations, row echelon form (REF), reduced row echelon form (RREF), standard form.
• Using row reduction/Gaussian elimination to determining linear independence, find a basis in $V(n, q)$.

1
Linear Codes

Definition and Notation: A q-ary linear code is a subspace of $V(n, q) = GF(q)^n$. A q-ary $[n, k]$-code is a k-dimensional subspace of $V(n, q)$. A q-ary $[n, k, d]$-code is an $[n, k]$-code with minimum distance $= d$.

Generator matrices:
- A generator matrix for a linear code is a matrix whose rows form a basis for the code.
- How to find a generator matrix from a spanning set for a code: use elementary row operations to find reduced row echelon form and then delete the all-zero rows.
- A generator matrix G for an $[n, k]$-code can be used for encoding arbitrary strings of length k into codewords: $u \mapsto uG$.
- The standard form of a generator matrix for an $[n, k]$-code is a matrix of the form $[I_k | A]$ where I_k is the $k \times k$ identity matrix. Up to equivalence, every linear code has a generator matrix in standard form. The standard form can be constructed from a given generator matrix by elementary row and column operations.

Dual codes and parity check matrices
- For a linear code C in $V(n, q)$, the dual code $C^\perp = \{ x \in V(n, q) : x \cdot u = 0 \; \text{for every} \; u \in C \}$.
- The sum of the dimensions of C and C^\perp code is always n.
- A parity check matrix for C is, by definition, a generator matrix for C^\perp.

<table>
<thead>
<tr>
<th>code</th>
<th>generator matrix</th>
<th>parity check matrix</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>G</td>
<td>H</td>
</tr>
<tr>
<td>C^\perp</td>
<td>H</td>
<td>G</td>
</tr>
</tbody>
</table>

- A generator matrix G for a linear code C can be transformed to parity check matrix H for C. If G is in standard form $G = [I_k | A]$, then $H = [-A^T | I_{n-k}]$ is a parity check matrix for C.

The minimal distance of a linear code C
- $d(C)$ is the minimal weight of a non-zero word in C (Theorem 5.2).
- $d(C)$ is the minimal number of linearly dependent columns in a parity check matrix for C.

Decoding with a linear code

Cosets of C.
- A k-dimensional linear code in $V(n, q)$ has q^{n-k} cosets.
• Each coset has \(q^k \) words.
• Costs of \(C_p \) partition \(V(n, q) \).
• Coset leader is an element of a coset of \(C \) with minimum weight.

Standard array
• the array consists of all elements of \(V(n, q) \)
• each row of the array is a coset of \(C \)
• the first row consists of the code itself
• the first column consisting of the coset leaders
• The rows are ordered so that the weights of coset leaders are non-decreasing as you pass from top to bottom

Standard array decoding
• If the received word in \(y \), find \(y \) in the standard array.
• Decode \(y \) to the top element in its column. Equivalently, subtract from \(y \) the coset leader of \(y + C \).
• Incomplete standard array decoding: decode a received word \(y \) if and only if the coset leader of \(y + C \) has weight at most \(\lceil (d - 1)/2 \rceil \); otherwise, declare an error.

The syndrome
• The syndrome of a word \(y \) in \(V(n, q) \) is \(S(y) = yH^T \).
• \(S(y) = 0 \) if and only if \(y \in C \).
• More generally, two words are in the same coset if and only if they have the same syndrome.

Syndrome decoding (a more practical version of standard array decoding): Let \(H \) be a parity check matrix for \(C \).
• For a received vector \(y \), compute the syndrome of \(y \)
• Find the coset leader \(e \) such that \(S(e) = S(y) \).
• Decode \(y \) as \(x = y - e \).