Solutions to problem set 4.

(1) Suppose C is a binary linear code of length 6 with generator matrix

\[
G = \begin{pmatrix}
1 & 1 & 1 & 1 & 1 & 1 \\
0 & 1 & 1 & 1 & 1 & 0 \\
1 & 0 & 1 & 0 & 1 & 1
\end{pmatrix}.
\]

Find the minimal distance of C.

Solution: The minimal distance of a linear code is equal to the minimal weight of a non-zero word in the code. The elements of C are, by definition, the linear combinations

\[a_1R_1 + a_2R_2 + a_3R_3,\]

where R_1, R_2 and R_3 are the rows of G, and a_1, a_2, a_3 are 0 or 1. There are 8 words in C, corresponding to the 8 choices of (a_1, a_2, a_3); the seven non-zero words are

\[
(1\ 1\ 1\ 1\ 1\ 1) \\
(0\ 1\ 1\ 1\ 1\ 0) \\
(1\ 0\ 1\ 0\ 1\ 1) \\
(1\ 0\ 0\ 0\ 0\ 1) \\
(0\ 1\ 0\ 1\ 0\ 0) \\
(1\ 1\ 0\ 1\ 0\ 1) \\
(0\ 0\ 1\ 0\ 1\ 0)
\]

The smallest weight of any of these words is 2; thus $d(C) = 2$.

(2) Give an example of a linear code C which does not have a generator matrix in standard form.

Solution: Let C be the code of length 3 with parity check matrix

\[
H = \begin{pmatrix}
1 & 0 & 0
\end{pmatrix}.
\]

That is, C consists of words of the form $(0, a, b)$, where a and b are arbitrary elements of F_q. Then C cannot have a generator matrix in standard form. Indeed, $\dim(C) = 2$, so a generator matrix in standard form would look like

\[
G = \begin{pmatrix}
1 & 0 & x \\
0 & 1 & y
\end{pmatrix}.
\]

But there is no word of the form $(1, 0, x)$ in C.

(3) Show that if a linear code C has a generator matrix G in standard form, such a generator matrix is unique. In other words, if G' is a generator matrix in standard form for C then $G' = G$.

Solution: Suppose C is a code, and G and G' are generator matrices in standard form. Let the rows of G be g_1, \ldots, g_k and the rows of G' be g'_1, \ldots, g'_k. Here $k = \dim(C)$. We want to show that $g_i = g'_i$ for every $i = 1, \ldots, k$.

Since G is standard form, we have:

\[
\begin{align*}
g_1 & = 100 \cdots 00**\cdots** \\
g_2 & = 010 \cdots 00**\cdots** \\
\vdots & \\
g_r & = 000 \cdots 01**\cdots**
\end{align*}
\]

(the *** represent unknown values).

Since G is a generator matrix for C and g' is a codeword in C, we can write

\[g'_i = \lambda_1 g_1 + \cdots + \lambda_k g_k,\]

where each λ_i is an element of F_q. Equating the first k entries on both sides, we see that $\lambda_i = 1$ and $\lambda_j = 0$ for every $j \neq i$. In other words, $g'_i = g_i$. This completes the proof.

(4) Let $q = 5$ and consider the q-ary linear code C of length 4, consisting of all words (a_1, a_2, a_3, a_4) such that $a_1 + 2a_2 + 3a_3 + 4a_4 \equiv 0$ (mod 5). Show that this is a linear code. Find a generator matrix in standard form for this code.

Solution: Let $a = (a_1, a_2, a_3, a_4) \in C$, $b = (b_1, b_2, b_3, b_4) \in C$, and let $\lambda \in F_q$. To show that C is linear we must show that $a + b \in C$ and $\lambda a \in C$. Since $a + b = (a_1 + b_1, a_2 + b_2, a_3 + b_3, a_4 + b_4)$, and

\[
\begin{align*}
(a_1 + b_1) + 2(a_2 + b_2) + 3(a_3 + b_3) + 4(a_4 + b_4) & = \\
(a_1 + 2a_2 + 3a_3 + 4a_4) + (b_1 + 2b_2 + 3b_3 + 4b_4) & = \\
0 + 0 & = 0.
\end{align*}
\]

we have that $a + b \in C$. Secondly, $\lambda a = (\lambda a_1, \lambda a_2, \lambda a_3, \lambda a_4)$, and

\[
(\lambda a_1) + 2(\lambda a_2) + 3(\lambda a_3) + 4(\lambda a_4) = \lambda(a_1 + 2a_2 + 3a_3 + 4a_4) = \lambda(0) = 0
\]
Thus $\lambda a \in C$ also, and thus C is a linear code.

Note that by the definition of C,

$$H = \begin{pmatrix} 1 & 2 & 3 & 4 \end{pmatrix}$$

is a parity check matrix. Viewing H as a generator matrix for C^\perp in standard form, we construct a parity check matrix for C^\perp or equivalently, a generator matrix for C as follows:

$$G = \begin{pmatrix} -2 & 1 & 0 & 0 \\ -3 & 0 & 1 & 0 \\ -4 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 3 & 1 & 0 & 0 \\ 2 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 \end{pmatrix}.$$

Interchanging the first and the third row and using row operations, we obtain a generator matrix in standard form

$$G_{stand} = \begin{pmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 2 \\ 0 & 0 & 1 & 3 \end{pmatrix}.$$

(5) Construct a standard array for the binary linear code with generator matrix

$$G = \begin{pmatrix} 1 & 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 1 & 1 \end{pmatrix}.$$

Use this array to decode 01010 and 11101.

Solution: Once again, words in C are linear combinations

$$a_1 R_1 + a_2 R_2 + a_3 R_3,$$

where R_1, R_2 and R_3 are the rows of G and a_1, a_2, a_3 are 0 or 1. Going through the 8 possible values of (a_1, a_2, a_3), we see that

$$C = \{00000, 10011, 01001, 00111, 11010, 10100, 01110, 11101\}.$$

C has $2^{5-3} = 4$ cosets. One possible choice of coset leaders leads to the following standard array:

<table>
<thead>
<tr>
<th></th>
<th>00000</th>
<th>10011</th>
<th>01001</th>
<th>00111</th>
<th>11010</th>
<th>10100</th>
<th>01110</th>
<th>11101</th>
</tr>
</thead>
<tbody>
<tr>
<td>00000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>11101</td>
</tr>
<tr>
<td>10000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>01010</td>
<td></td>
</tr>
<tr>
<td>01000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>00010</td>
<td>10111</td>
<td></td>
</tr>
<tr>
<td>11011</td>
<td>00001</td>
<td>01111</td>
<td>10010</td>
<td>11100</td>
<td>00110</td>
<td>10101</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>00100</td>
<td>10001</td>
<td>01011</td>
<td>00101</td>
<td>11000</td>
<td>10110</td>
<td>01100</td>
<td>11111</td>
</tr>
</tbody>
</table>

Finding 01010 in the above table we decode it as 11010. (If the coset leader 00100 is chosen in the second coset instead of 10000 then the answer changes to 01110.)

Finding 11101 in the above table we decode it as 11101.
(6) Construct a standard array for the ternary linear code with generator matrix

\[G = \begin{pmatrix} 1 & 0 & 1 & 2 \\ 0 & 1 & 1 & 1 \end{pmatrix} \]

Using this array to decode 1211 and 2102.

Solution: Once again, words in \(C \) are linear combinations

\[a_1\textbf{R}_1 + a_2\textbf{R}_2, \]

where \(\textbf{R}_1 \) and \(\textbf{R}_2 \) are the rows of \(G \) and \(a_1, a_2 \) are 0, 1 or 2. Going through the 9 possible values of \((a_1, a_2)\), we see that

\[C = \{0000, 1012, 0111, 2021, 0222, 1120, 1201, 2210, 2102\}. \]

The standard array is:

\[
\begin{array}{ccccccccccc}
0000 & 1012 & 0111 & 2021 & 0222 & 1120 & 1201 & 2210 & 2102 \\
1000 & 2012 & 1111 & 0021 & 1222 & 2120 & 2201 & 0210 & 0102 \\
0100 & 1112 & 0211 & 2121 & 0022 & 1220 & 1001 & 2010 & 2202 \\
0010 & 1022 & 0121 & 2001 & 0202 & 1100 & 1211 & 2220 & 2112 \\
0001 & 1010 & 0112 & 2022 & 0220 & 1121 & 1202 & 2211 & 2100 \\
2000 & 0012 & 2111 & 1021 & 2222 & 0120 & 0201 & 1210 & 1102 \\
0200 & 1212 & 0011 & 2221 & 0122 & 1020 & 1101 & 2110 & 2002 \\
0020 & 1002 & 0101 & 2011 & 0212 & 1110 & 1221 & 2200 & 2122 \\
0002 & 1001 & 0100 & 2010 & 0211 & 1112 & 1220 & 2202 & 2121 \\
\end{array}
\]

Finding 1211 in the above table we decode it as 1201.
Finding 2102 in the above table we decode it as 2102.

(7) Let \(q = 11 \) and \(C \) be the \(q \)-ary linear code with parity check matrix

\[H = \begin{pmatrix} 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \end{pmatrix}. \]

(a) What is the minimal distance of this code?
(Recall that Problem 5 on Midterm 1 asked you to show that \(d(C) \leq 3 \). This question is asking for the exact value of \(d(C) \).)

(b) Suppose a word \(x \), transmitted using this code, is received as

\[y = (1, 1, 0, 0, 0, 0, 0, 0, 0, 0). \]

Assuming at most one error could occur in transmission, find \(x \). Explain your answer.

Solution: (a) Answer: \(d(C) = 3 \). To prove this, we need to show:

(i) no two columns of \(H \) are linearly dependent.

(ii) \(H \) has three linearly dependent columns.
Denote the \(i\)th column of \(H\) by \(K_i\). That is,

\[
K_i = \binom{1}{i}
\]

To prove (i), assume \(aK_i + bK_j = \begin{pmatrix} 0 \\ 0 \end{pmatrix}\) for some \(a, b \in F_{11}\) and some \(i \neq j\). Our goal is to show that \(a = b = 0\). Indeed,

\[
a \begin{pmatrix} 1 \\ i \end{pmatrix} + b \begin{pmatrix} 1 \\ j \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}
\]

translates to \(a + b = 0\) and \(ia + jb = 0\). From the first equation, \(b = -a\), and from the second \(a(i - j) = 0\) in \(F_{11}\). Since \(F_{11}\) is a field, and \(i \neq j\), we conclude that \(a = 0\) and thus \(b = 0\) in \(F_{11}\), as desired.

To prove (ii), note that \(K_1 - 2K_2 + K_3 = 0\), so \(K_1, K_2\) and \(K_3\) are linearly dependent.

(b) Assume the error vector is of the form \(e = (0, \ldots, 0, m, 0, \ldots, 0)\), where \(m\) is in position \(p\). That is a single error of magnitude \(m\) has occurred, in position \(p\). Then \(e\) and \(y\) have the same syndrome.

\[
S(y) = y \cdot H^T = (2, 3), \quad S(e) = e \cdot H^T = (m, mp).
\]

Thus \(m = 2\) and \(mp = 3\) in \(F_{11}\). Solving for \(p\), we obtain, \(2p = 3\) in \(F_{11}\) of \(p = 3 \cdot 2^{-1} = 3 \cdot 6 = 7\) in \(F_{11}\).

Thus \(e = (0, 0, 0, 0, 0, 2, 0, 0, 0)\), and we decode \(y\) as \(x = y - e = (1, 1, 0, 0, 0, 9, 0, 0, 0)\).

(8) Let \(C\) be the binary linear code with parity check matrix

\[
H = \begin{pmatrix} 1 & 0 & 0 & 1 & 1 & 0 & 1 \\ 0 & 1 & 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 & 0 & 1 & 1 \end{pmatrix}
\]

How many cosets does \(C\) have? Find the coset leaders by going through words of small weight and calculating their syndromes until you exhaust all possible syndromes. Decode received words (a) 1010101, (b) 1110001, (c) 0111111.

Solution: Since an \([n, k]\)-code has an \((n - k) \times n\) parity check matrix, we know that \(\dim(C) = k = 4\) and the length of \(C\) is \(n = 7\). The standard array has \(2^k = 16\) columns and \(2^n = 128\) entries, thus it must have \(128/16 = 8\) rows (i.e. \(C\) has 8 cosets).

Now let \(e_j\) be the error vector with 1 is position \(j\) and 0 in every other position. Then the syndrome \(S(e_j)\) is just the transpose of the \(j\)th column of \(H\). We note that all the columns are distinct in \(H\) and that \((0 \ 0 \ 0)\) is not among them. This means that \(d(C) \geq 3\). Thus the 8 words of weight \(\leq 1\), namely \(0\) and \(e_1, \ldots, e_8\)
are coset leaders, and each coset has at most one of them. Since there are 8 cosets, each coset has exactly one of these words.

(a) $S(1010101) = (100)$ is the transpose of the first column of H. That is, $S(e_1) = (100)$, so assume that the error vector is e_1 and decode (1010101) as

\[(1010101) - (1000000) = (0010101).\]

(b) Similarly, $S(1110001) = 000$ and $S(0000000) = 000$ so assume that no error occurred in transmission and decode as (1110001) as $(1110001) - (0000000) = (1110001)$.

(c) $S(0111111) = (100)$ and $S(1000000) = (100)$ so we decode (0111111) as $(0111111) - (1000000) = (1111111)$.