Solutions to problem set 3.

(1) Is 0131160938 a valid ISBN number?

Solution: No, because

\[1 \cdot 0 + 2 \cdot 1 + 3 \cdot 3 + 4 \cdot 1 + 5 \cdot 1 + 6 \cdot 6 + 7 \cdot 0 + 8 \cdot 9 + 9 \cdot 3 + 10 \cdot 8 \equiv 4 \pmod{11}.

(2) Problem 4.4.

Solution: First we check that if \(u = 0 \) then \(u \) and \(v \) are linearly dependent. Indeed, in this case \(1 \cdot u + 0 \cdot v = 0 \). Similarly, if \(v = 0 \) then \(u \) and \(v \) are linearly dependent.

Next we check that is one of these vectors is a scalar multiple of the other, say, if \(u = cv \), then \(u \) and \(v \) are linearly dependent. Indeed, in this case we have \(1 \cdot u - c \cdot v = 0 \).

Conversely, suppose that \(u \) and \(v \) are linearly dependent, i.e., \(au + bv = 0 \) for some scalars \(a \) and \(b \) such that one of the is non-zero. Consider two cases.

(i) \(b = 0 \). In this case \(a \neq 0 \) and thus \(u = 0 \).

(ii) \(b \neq 0 \). In this case \(v = \frac{a}{b}u \) is a scalar multiple of \(u \).

(3) Problem 4.5.

Solution: (a) After renumbering the vectors, we may assume that \(i = 1 \). Let \(c \) be a non-zero element of the field \(F_q \). We need to show that

(i) \(\text{Span}(x_1, x_2, \ldots, x_n) = \text{Span}(c \cdot x_1, x_2, \ldots, x_n) \), and

(ii) \(x_1, x_2, \ldots, x_n \) are linearly dependent if and only if \(c \cdot x_1, x_2, \ldots, x_n \) are linearly dependent.

To prove (i), recall that \(\text{Span}(x_1, x_2, \ldots, x_n) \) consists of linear combinations

\[v = s_1 x_1 + s_2 x_2 + \cdots + s_n x_n, \]

where \(s_1, \ldots, s_n \) are elements of \(F_q \). Any such \(v \) is a linear combination

\[v = s_1 c^{-1} (c \cdot x_1) + s_2 x_2 + \cdots + s_n x_n. \]

of \(c x_1, x_2, \ldots, x_n \). Conversely, every linear combination

\[w = t_1 (c \cdot x_1) + t_2 x_2 + \cdots + t_n x_n \]

of \(c \cdot x_1, x_2, \ldots, x_n \) can be rewritten as a linear combination

\[w = (t_1 c) \cdot x_1 + t_2 x_2 + \cdots + t_n x_n \]

of \(x_1, x_2, \ldots, x_n \). This proves (i).

To prove (ii), assume that \(x_1, x_2, \ldots, x_n \) are linearly dependent. That is,

\[s_1 x_1 + s_2 x_2 + \cdots + s_n x_n = 0 \]

for some \(s_1, \ldots, s_n \) in \(F_q \), such that \((s_1, \ldots, s_n) \neq (0, \ldots, 0) \). Then

\[s_1 c^{-1} (c \cdot x_1) + s_2 x_2 + \cdots + s_n x_n = 0 \]

and \((s_1 c^{-1}, s_2, \ldots, s_n) \neq (0, 0, \ldots, 0) \). This shows that if \(x_1, x_2, \ldots, x_n \) are linearly dependent, then \(c \cdot x_1, x_2, \ldots, x_n \) are also linearly dependent.

Conversely, suppose \(c \cdot x_1, x_2, \ldots, x_n \) are linearly dependent, i.e.,

\[t_1 (c \cdot x_1) + t_2 x_2 + \cdots + t_n x_n = 0 \]
where at least one of the coefficients is non-zero. Then we can rewrite this identity as
\[(t_1c_1)x_1 + u_2x_2 + \cdots + t_nx_n = 0.\]
Since \(c \neq 0\), at least one of the coefficients \(ct_1, t_2, \ldots, t_n\) is non-zero. We conclude that if \(c \cdot x_1, x_2, \ldots, x_n\) are linearly dependent, then \(x_1, x_2, \ldots, x_n\) are also linearly dependent, as claimed.

(b) After renumbering the vectors if necessary, we may assume that \(i = 1\) and \(j = 2\). We need to show that \(y_1, x_2, \ldots, x_k\) form a basis of \(C\), where \(y_1 = x_1 + ax_2\). Since we know that \(\dim(C) = k\), it suffices to show that \(y_1, x_2, \ldots, x_k\) span \(C\). Indeed, we can write any given \(c \in C\) as a linear combination of the basis vectors \(x_1, \ldots, x_k\):
\[c = a_1x_1 + a_2x_2 + \cdots + a_kx_k.\]
Substituting, \(x_1 = y_1 - ax_2\), we see that
\[c = a_1y_1 + (a_2 - aa_1)x_2 + \cdots + a_kx_k\]
is a linear combination of \(y_1, x_2, \ldots, x_k\). In other words, \(y_1, x_2, \ldots, x_k\) span \(C\).

(4) Let \(C\) be the vector subspace of \(V(4, 5) = (F_5)^4\) spanned by \((1, 1, 1, 1), (1, 2, 0, 3)\) and \((4, 0, 3, 1)\). What is the dimension of \(C\)? Construct a generator matrix and a parity check matrix for \(C\).

Solution: Reducing
\[
A = \begin{pmatrix}
1 & 1 & 1 & 1 \\
1 & 2 & 0 & 3 \\
4 & 0 & 3 & 1
\end{pmatrix}
\]
to row echelon form, we obtain
\[
A' = \begin{pmatrix}
1 & 1 & 1 & 1 \\
0 & 1 & 4 & 2 \\
0 & 0 & 0 & 0
\end{pmatrix}.
\]
Here all calculations were carried out mod 5. The row of zeros at the bottom of \(A'\) tells us that \(S\) is linearly dependent. \(C\) is the row space of \(A\) which is the same as the row space of \(A'\). The first two rows of \(A'\) thus form a basis for \(C\), yielding the generator matrix
\[
G = \begin{pmatrix}
1 & 1 & 1 & 1 \\
0 & 1 & 4 & 2
\end{pmatrix}.
\]
The dimension of \(C\) is the number of rows of \(G\). Here \(\dim(C) = 2\).

To construct the parity check matrix, we further reduce \(G'\) to standard form,
\[
G' = \begin{pmatrix}
1 & 0 & 2 & 4 \\
0 & 1 & 4 & 2
\end{pmatrix}.
\]
Once again all calculations here were carried out mod 5. Now we can readily construct the parity check matrix. Remembering that \(-2 = 3\) and \(-4 = 1\) in \(F_5\), we obtain
\[
H = \begin{pmatrix}
3 & 1 & 1 & 0 \\
1 & 3 & 0 & 1
\end{pmatrix}.
\]
(5) Find a generator matrix and a parity check matrix for the ISBN code.

Solution: Denote the ISBN code by $C \subset V(10,11)$. C is defined by the parity check matrix

\[H = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \end{pmatrix}. \]

We will view it as a generator matrix for the dual code C^\perp. It is in standard form, with the 1×1 identity matrix on the left. Thus we can use the formula given by Theorem 7.6 to obtain a parity check matrix for C^\perp or equivalently, a generator matrix for C:

\[G = \begin{pmatrix} -2 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ -3 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ -4 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ -5 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ -6 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ -7 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ -8 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ -9 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ -10 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 9 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 8 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 7 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 6 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 5 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 4 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 3 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \end{pmatrix}. \]

Note that generator and parity check matrices are not unique, so other answers are possible.

(6) (a) For which prime numbers q is $G = \begin{pmatrix} 1 & 1 & 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 & 1 & 1 \end{pmatrix}$, a generator matrix for a q-ary linear code C in $V(6,q)$?

(b) If G is a generator matrix for C, determine whether or not the following words lie in C: $(1 \ 0 \ 1 \ 0 \ 1 \ 0)$, $(1 \ 1 \ 2 \ 2 \ 3 \ 3)$.

Solution: G is a generator matrix for a code C if and only if the rows of G are linearly independent. Let R_1, R_2 and R_3 be the rows of G. If $q = 2$ then $R_1 + R_2 + R_3 = (2, 2, 2, 2, 2) = (0, 0, 0, 0, 0)$ and so G is not a generator matrix for any linear code.

If $q \neq 2$, then using row operations, we reduce G to the reduced row echelon form $G' = \begin{pmatrix} 1 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 1 \end{pmatrix}$, This matrix has a leading term in each row. Hence the rows of G' are linearly independent, and so are the rows of G. Thus for $q \neq 2$, G is a generator matrix.

Moreover, C is the span of the rows of G', i.e., consists of all vectors of the form (a, a, b, b, c, c), where a, b and c lie in F_q. In particular, $(1 \ 1 \ 2 \ 3 \ 3)$ lies in C and $(1 \ 0 \ 1 \ 0 \ 1 \ 0)$ does not.

(7) Which of the following codes in F_q^n are linear? For each linear code find a generator matrix and a parity check matrix.

(a) $C_1 = \{(0000), (1111), (1010), (0101)\}, q = 2, n = 4$

(b) $C_2 = \{(0000), (1111), (1010), (0101)\}, q = 3, n = 4$

(c) $C_3 = \{(000), (111), (222)\}, q = 3, n = 3$

Solution: (a) Yes, C_1 is the span of $a = (1010)$ and $b = (0101)$.

(b) No. The number of words in a linear code over \(F_3 \) should be a power of 3. Another way to see that \(C_2 \) is not a linear code, is to notice that \((1111)\) is in \(C_2 \) but \(2 \cdot (1111) \) is not.

(c) Yes, \(C_3 \) is the span of \((111)\).

(8) For each of the following subsets \(S \) of \(V(n, q) = F_q^n \), find a basis for, and the dimension of, the span of \(S \). Also, determine if the given \(S \) is linearly independent.

(a) \(S = \{1100, 1010, 1001, 0101\}, q = 2, n = 4 \)
(b) \(S = \{1234, 3142, 2413, 4321\}, q = 5, n = 4 \)
(c) \(S = \{0140, 4322, 1233, 2141\}, q = 5, n = 4 \)

Solution:

(a) Reducing
\[
A = \begin{pmatrix}
1 & 1 & 0 & 0 \\
1 & 0 & 1 & 0 \\
1 & 0 & 0 & 1 \\
0 & 1 & 0 & 1
\end{pmatrix}
\]
to row echelon form, we obtain
\[
A' = \begin{pmatrix}
1 & 1 & 0 & 0 \\
0 & 1 & 1 & 0 \\
0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0
\end{pmatrix}.
\]
The row of zeros at the bottom of \(A' \) shows that \(S \) is not linearly independent. The span of \(S \) is 3-dimensional; the first three (non-zero) rows of \(A' \) form a basis.

(b) The last three vectors are scalar multiples of the first. Thus \(S \) is linearly dependent, and \(\text{Span}(S) \) is a 1-dimensional vector space with basis \(\{(1234)\} \).

(c) Once again, we row reduce
\[
A = \begin{pmatrix}
0 & 1 & 4 & 0 \\
4 & 3 & 2 & 2 \\
1 & 2 & 3 & 3 \\
2 & 1 & 4 & 1
\end{pmatrix}
\]
to row echelon form. Start by interchanging the first and the third rows, then clear the non-zero entry under the pivots in column 1 and 2 to obtain
\[
A' = \begin{pmatrix}
1 & 2 & 3 & 3 \\
0 & 1 & 4 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{pmatrix}
\]
Once again, the zero rows at the bottom of \(A' \) indicate that \(S \) is not linearly independent. \(\text{Span}(S) = \text{row space of } A = \text{row space of } A' \) is 2-dimensional; the non-zero rows of \(A' \) form a basis of this space.