Problem Set 6. Due in class Thursday, December 1.
Math 322, Fall 2016

1. Suppose a p-group G acts on a finite set X. If this action has n fixed points in X, show that $n \equiv |X| \pmod{p}$.
 (Recall that $x \in X$ is called a fixed point if $g \cdot x = x$ for every $g \in G$.)

2. Let $f : G_1 \to G_2$ be a surjective (i.e., onto) homomorphism of finite groups, H_2 be a subgroup of G_2 and $H_1 = f^{-1}(H_2) = \{g_1 \in G_1 \mid f(g_1) \in H_2\}$ be the preimage of H_2 in G_1.
 (a) Show that $|H_1| = |H_2| \cdot |\text{Ker}(f)|$. Here $\text{Ker}(f)$ denotes the kernel of f.
 (b) If H_2 is a normal subgroup of G_2, show that H_1 is a normal subgroup of G_1.

3. Show that there does not exist a surjective (i.e., onto) homomorphism $f : S_n \to C_p$ for any integer $n \geq 2$ and any prime number $p \geq 3$. Here C_p denote the cyclic group of order p.
 Hint: The cases, where $n = 2$, 3 and 4 require special care.

4. Show that A_4 is the only subgroup of S_4 of order 12.

5. Let G be a group and H be a normal subgroup.
 (a) If $|H| = 2$, show that H is central in G. That is, $H \subset Z(G)$.
 (b) Give an example of a group G and a normal subgroup $H \triangleleft G$ such that H is not central in G.

6. Let G be a subgroup of S_n. Suppose G contains an odd permutation.
 (a) Show that $|G|$ is even, i.e., $|G| = 2k$ for some positive integer k.
 (b) Show that exactly k permutations in G are even and the other k are odd.

7. (a) Prove that the alternating group A_4 has exactly one Sylow 2-subgroup.
 (b) Prove that A_5 has exactly five Sylow 2-subgroups.

8. Let $|G|$ be a finite group of order n. For each prime p dividing n, let H_p denote the Sylow p-subgroup of G. Let S be the union of the subgroups H_p over all primes p dividing n. Show that S generates G, i.e., $\langle S \rangle = G$.
 Hint: What does Lagrange’s theorem say about the order of $\langle S \rangle$?

9. Suppose G has five conjugacy classes with 1, 4, 5, 5 and 5 elements, respectively.
 (a) Does G have a normal subgroup of order 4?
 (b) Does G have a normal subgroup of order 5?

10. Let G be a group, $H \triangleleft G$ be a normal subgroup and S be a Sylow subgroup of G. Show that $H \cap S$ is a Sylow subgroup of H.