Problem Set 5. Solutions.
Math 322, Fall 2016

(1) Let \(G \) be a group and \(a, b \in G \). Recall that a commutator \([a, b]\) is defined as \(aba^{-1}b^{-1} \). Show that the inverse of a commutator is again a commutator. That is, \([a, b]^{-1} = [c, d] \) for some \(c, d \in G \). Find \(c \) and \(d \) (assuming \(a \) and \(b \) are given).

Solution: Let \(a, b \in G \). We have
\[
[a, b]^{-1} = (aba^{-1}b^{-1})^{-1} = bab^{-1}a^{-1} = [b, a].
\]

(2) Let \(G \) be a group and \(H \) be a normal subgroup of \(G \).
(a) If \(G \) is abelian, show that \(G/H \) is also abelian.
(b) If \(G = \langle a_1, \ldots, a_r \rangle \), show that \(G/H = \langle a_1 H, \ldots, a_r H \rangle \). In other words, if \(G \) is generated by \(\{a_1, \ldots, a_r\} \), then \(G/H \) is generated by \(\{a_1 H, \ldots, a_r H\} \).
(c) If \(G \) is cyclic, show that \(G/H \) is cyclic.

Solution: (a) Assume \(G \) is abelian. Let \(aH, bH \in G/H \) where \(a, b \in G \). We have
\[
(aH)(bH) = (ab)H = (ba)H = (bH)(aH),
\]
therefore \(G/H \) is abelian.

(b) Assume \(G = \langle a_1, \ldots, a_r \rangle \). Let \(gH \in G/H \) where \(g \in G \). We want to show that \(gH \in \langle a_1 H, \ldots, a_r H \rangle \). Since \(a_1, \ldots, a_r \) generate \(G \), we can write \(g \) as a word, \(g = g_1^{e_1} \ldots g_n^{e_n} \) for some integer \(n \geq 1 \), and some elements \(g_i \in \{a_1, \ldots, a_r\} \). Then \(gH = g_1^{e_1} \ldots g_n^{e_n} H = (g_1 H)^{e_1} \ldots (g_n H)^{e_n} \). Thus \(g_i H \in \{a_1 H, \ldots, a_r H\} \), as desired.

(c) “Cyclic” means “generated by one element”. Thus part (a) is a special case of part (b), with \(r = 1 \).

(3) Let \(G \) be a finite group, \(H \triangleleft G \) be a normal subgroup and \(\pi: G \to G/H \) be the quotient map. Recall that a subgroup \(K \leq G \) is called a complement to \(H \) in \(G \) if (i) \(K \cap H = \{e\} \) and (ii) \(|H| \cdot |K| = |G| \). Show that \(K \) is a complement to \(H \) in \(G \) if and only if \(\pi \) restricts to an isomorphism between \(K \) and \(G/H \).

Solution: For notational convenience let us write \(\pi_K \) for the restriction of \(\pi \) to \(K \), i.e. \(\pi_K : K \to G/H \) is defined by \(\pi_K(k) = \pi(k) = kH \).

(\(\Rightarrow \)): Assume \(K \) is a complement to \(H \) in \(G \). Let us write \(\pi_K \) for the restriction of \(\pi \) to \(K \), i.e. \(\pi_K : K \to G/H \) is defined by \(\pi_K(k) = \pi(k) = kH \). It is clear that \(\pi_K \) is a group homomorphism, since \(\pi \) is one and \(K \) is a subgroup of \(G \).

Our goal is to show that \(\pi_K \) is a bijection, i.e., is \(1 - 1 \) and onto. By condition (ii), \(|K| = \frac{|G|}{|H|} = |G/H| \). Thus by the pigeonhole principle, we only need to check that \(\pi_K \) is \(1 - 1 \). Equivalently, we need to check that \(\text{Ker}(\pi_K) = \{e\} \). Assume that \(\pi_K(k) = e_{G/H} \) for some \(k \in K \). That is, \(kH = H \) or equivalently, \(k \in H \). Thus since \(k \in K \cap H = \{e\} \), i.e., \(k = e \) as desired.
(⇐) Assume \(\pi_K : K \rightarrow G/H \) is an isomorphism. We need to prove (i) and (ii).

(i) \(K \cap H = K \cap \ker(\pi) = \ker(\pi_K) = \{e\} \), as desired.

(ii) Since the group \(K \) and \(G/H \) are isomorphic, they have the same number of elements. Thus \(|K| = \frac{|G|}{|H|} \) or equivalently, \(|G| = |K||H| \).

(4) Let \(G \) be a group and \(D = \{(g, g) \mid g \in G\} \) be the “diagonal” in \(G \times G \).

(a) Show that \(D \) is a subgroup of \(G \times G \).

(b) Show that \(D \) is a normal subgroup of \(G \times G \) if and only if \(G \) is abelian.

(c) Show that the function \(f : G \times G \rightarrow G \) given by \(f(a, b) = ab^{-1} \) is a homomorphism if and only if \(G \) is abelian.

Solution: (a) Let us show \(D \) is a subgroup of \(G \times G \).

Proof 1:
- \(D \) is not empty: Clearly \((e, e) \in D \).
- Closure under composition: Let \((g, g), (h, h) \in D \). Then \((g, g)(h, h) = (gh, gh) \in D \).
- Closure under inversion: Let \((g, g) \in D \). We have \((g, g)^{-1} = (g^{-1}, g^{-1}) \).

(b) \(\Rightarrow \) Assume \(D \) is a normal subgroup of \(G \times G \). Let \(g, h \in G \). Consider the element \((g, g) \in D \). Since \(D \) is normal we have that \((e, h)(g, g)(e^{-1}, h^{-1}) = (g, hgh^{-1}) \in D \), so its two coordinates are the same, hence \(g = hgh^{-1} \). Consequently, \(gh = hg \).

(⇐) Assume \(G \) is abelian. Then the group \(G \times G \) is abelian \(((g, h)(k, \ell) = (gh, k\ell) = (hg, \ell k) = (h, \ell)(g, h))\). By previous assignment we know that every subgroup of \(G = Z(G) \) is normal in \(G \). In particular \(D \) is normal in \(G \times G \).

(c) \(\Rightarrow \) Proof 1: We argue by contradiction. Assume \(f \) is a homomorphism. Then \((g, h) \in \ker(f) \) if and only if \(gh^{-1} = e \), if and only if \((g, h) \in D \). In other words, \(D = \ker(f) \). Since \(D \) is the kernel of a homomorphism, it is a normal subgroup of \(G \times G \). By part (b), \(G \) is abelian.

Proof 2: Assume \(f \) is a homomorphism. Then \(f(hg, h) = (hgh^{-1}) \) but also \(f(hg, h) = f((h, h)(g, e)) = f(h, h)f(g, e) = eg = g \). Thus \(hgh^{-1} = g \) or equivalently, \(hg = gh \).

(⇐) Assume \(G \) is abelian. Then \(f((a, b)(c, d)) = f(ac, bd) = ac(bd)^{-1} = acd^{-1}b^{-1} = ab^{-1}cd^{-1} = f(a, b)f(c, d) \).

Thus \(f \) is a homomorphism.

(5) Let \(G_1 \) and \(G_2 \) be cyclic groups of orders \(m \) and \(n \), respectively. Show that the group \(G_1 \times G_2 \) if cyclic if and only if \(\gcd(m, n) = 1 \).

Solution: (⇐) Assume \(\gcd(m, n) = 1 \). Let \(G \) be a cyclic group of order \(mn \).
Then G contains a cyclic group H_1 of order m and a cyclic group H_2 of order n. The subgroups groups H_1 and H_2 of G are both cyclic and normal (because G is abelian), $H_1 \cap H_2 = \{e\}$ (because the order of $H_1 \cap H_2$ divides both m and n), and $|H_1| \cdot |H_2| = mn = |G|$. In particular, H_2 is a normal complement of H_1 in G. By a theorem proved in class, we know that G is isomorphic to $H_1 \times H_2$. Now note that H_1 is isomorphic to G_1 (because both are cyclic of order m) and similarly H_2 is isomorphic to G_2. Hence, $G \cong H_1 \times H_2 \cong G_1 \times G_2$, as desired. Here \cong stands for isomorphism of groups.

(\Rightarrow) Conversely, assume $\gcd(m, n) = d > 1$. Then G_1 contains a cyclic subgroup K_1 of order d and G_2 contains a cyclic subgroup K_2 of order d. Now the group $G = G_1 \times G_2$ contains two cyclic subgroups of order d, $K_1 \times \{e_2\}$ and $\{e_1\} \times K_2$, where e_i is the identity element of G_i ($i = 1, 2$). A cyclic group contains at most one subgroup of any given order. Hence, $G_1 \times G_2$ cannot be cyclic.

(6) Let G be a finite group and k be an integer. If $a \in G$ has m conjugates, and a^k has n conjugates, show that n divides m.

Hint: Compare the centralizers of a and a^k.

Solution: Note that $C_G(a)$ and $C_G(a^k)$ are subgroups of G. If $g \in C_G(a)$ then $gg^{-1} = a$ hence $ga^kg^{-1} = (gag^{-1})^k = a^k$ so $g \in C_G(a^k)$. Therefore, $C_G(a)$ is a subgroup of $C_G(a^k)$, so by Lagrange theorem we have that $|C_G(a)|$ divides $|C_G(a^k)|$. That is, $|C_G(a^k)| = d|C_G(a)|$ for some integer d. Now

$$m = |G : C_G(a)| = \frac{|G|}{|C_G(a)|} = \frac{|G|}{d|C_G(a^k)|} = d|G : C_G(a^k)| = dn.$$

In other words, n divides m.

(7) Let G be a group and $H \leq Z(G)$ be a central subgroup of G. (Here, as usual, $Z(G)$ denotes the center of G.) We know from a previous homework assignment that H is normal in G. Thus we can form the quotient group G/H. If G/H is cyclic, show that G is abelian.

Solution: Assume that H is central and G/H is cyclic. We will prove that G/H is cyclic. There is $\gamma \in G$ such that $G/H = \langle \gamma H \rangle$. Let $a, b \in G$; our goal is to show that a and b commute.

There are $k, \ell \in \mathbb{Z}$ such that $aH = \gamma^k H$ and $bH = \gamma^\ell H$. In other words, $a = \gamma^k h_1$ and $b = \gamma^\ell h_2$ for some $h_1, h_2 \in H$. Now

$$ab = \gamma^k h_1 \gamma^\ell h_2$$

$$= \gamma^{k+\ell} h_1 h_2$$

$$= \gamma^\ell \gamma^k h_1 h_2$$

$$= \gamma^\ell h_2 \gamma^k h_1$$

$$= ba,$$
so G is abelian. Note that we were free to move h_1, h_2 past γ and past each other, since these elements are central, i.e., they commute with every element of G.

(8) Suppose G is a group with exactly two conjugacy classes. Show that $|G| = 2$.

Solution: Assume that G has exactly 2 conjugacy classes. Suppose $|G| = n$.

The conjugacy class of e is always $\{e\}$. This means that there is another conjugacy class, C containing the remaining $n - 1$ elements. Since $|C|$ divides $|G| = n$, we see that $n - 1$ divides n. In other words,

$$\frac{N}{n-1} = 1 + \frac{1}{n-1}$$

is an integer. This is only possible if $n - 1 = 1$, i.e., $n = 2$

(9) Suppose G is a group of order $2p$, where p is a prime. Show that there exists an onto homomorphism $G \rightarrow H$, where H is a group of order 2.

Hint: Use Cauchy’s theorem.

Solution: By Cauchy’s theorem, G has a cyclic subgroup order p. Denote this subgroup by H. Then $[G : H] = \frac{2p}{p} = 2$. By a theorem proved in class, H is normal in G. The quotient homomorphism $\pi: G \rightarrow G/H$ has the desired properties; it is onto, and $|G/H| = [G : H] = 2$.

(10) Suppose G be a group of order p^n, where p is a prime. (Such groups are called p-groups.) Show that $Z(G) \neq \{e\}$.

Hint: Use the class equation.

Solution: Assume that $|G| = p^n$ for some $n \geq 1$. If G is abelian, then $G = Z(G)$ and the result is immediate. Else there are g_1, \ldots, g_m representatives of nontrivial conjugacy classes of G such that

$$|G| = |Z(G)| + \sum_{i=1}^m [G : C_G(g_i)].$$

Note that $[G : C_G(g_i)]$ divides $|G| = p^n$ hence $[G : C_G(g_i)] = p^{\ell_i}$ for some $\ell_i \geq 1$ (indeed $\ell_i \neq 0$ since it would imply that $C_G(g_i) = G$ so $g_i \in Z(G)$).

We showed that p divides $[G : C_G(g_i)]$ for all i, and p divides $|G|$ therefore p must divide $|G| - \sum_{i=1}^m [G : C_G(g_i)] = |Z(G)|$. Since $p \geq 2$ and p divides $|Z(G)|$ we must have $|Z(G)| \geq 2$ so $Z(G) \neq \{e\}$.