Solutions to Problem Set 4.
Math 322, Fall 2016. Instructor: Reichstein

(1) Let G be a cyclic group of order pqr, where p, q and r are distinct primes. How many subgroups does G have (counting the trivial subgroup $\{e\}$ and G itself).

Solution: Let G be a cyclic group of order pqr where p, q, r are distinct primes. Since G is finite and cyclic, we know that there is exactly one group of order d for each positive divisor d of pqr. Thus we only need to count the number of positive integers dividing pqr.

By the Fundamental Theorem of Arithmetic, the divisors of pqr have the form $p^{\varepsilon_p}q^{\varepsilon_q}r^{\varepsilon_r}$, where $\varepsilon_p, \varepsilon_q, \varepsilon_r \in \{0, 1\}$. There are two choices for ε_p, two choices for ε_q and two choices for ε_r. Thus there are $2 \cdot 2 \cdot 2 = 8$ divisors of pqr and therefore 8 subgroups of G.

(2) Let G be a finite group, $d \geq 1$ be an integer, and $X = \{a \in G \mid o(a) = d\}$.

(a) Define a relation on X as follows: $(a, b) \in R$ if $\langle a \rangle = \langle b \rangle$, i.e., the cyclic subgroup generated by a is the same as the cyclic subgroup generated by b. Show that R is an equivalence relation.

(b) Show that the number of elements of order d in G is a multiple of $\phi(d)$. Here ϕ denotes the Euler ϕ-function.

Solution:

(a) Let us prove that R is an equivalence relation on X.

- **Reflexivity:** Let $a \in X$, we clearly have $\langle a \rangle = \langle a \rangle$ so $(a, a) \in R$.
- **Symmetry:** Let $a, b \in X$ such that $(a, b) \in R$, i.e., $\langle a \rangle = \langle b \rangle$ then also $\langle b \rangle = \langle a \rangle$ so $(b, a) \in R$.
- **Transitivity:** Let $a, b, c \in X$ such that $(a, b) \in X$ and $(b, c) \in X$. We have $\langle a \rangle = \langle b \rangle = \langle c \rangle$ so $(a, c) \in R$.

Therefore, R is an equivalence relation.

(b) X is partitioned into equivalence classes for the equivalence relation defined in part (a). Thus it suffices to show that each equivalence class contains exactly $\phi(d)$ elements.

Let Y be an equivalence class. Then every element a of Y generates the same cyclic subgroup of order d in G. Denote this cyclic subgroup by C. Elements of Y are exactly the generators of C. We showed in class that a cyclic group of order d has exactly $\phi(d)$ generators. Thus $|Y| = \phi(d)$, as claimed.

(3) Show that a homomorphism of groups $f: G \to H$ is one-to-one if and only if $\text{Ker}(f) = \{e\}$.

Solution: Let $f: G \to H$ be a homomorphism of groups.

- **Assume f is one-to-one:** If $g \in \text{Ker}(f)$ then $f(g) = e_H = f(e_G)$ and so $g = e_G$. So $\text{Ker}(f) \subseteq \{e_G\}$. On the other hand, we know that $\text{Ker}(f)$ is a subgroup of G; in particular, $e_G \in \text{Ker}(f)$. Thus $\text{Ker}(f) = \{e_G\}$.

• Assume Ker(f) = \{e_G\}. Let $g, h \in G$ such that $f(g) = f(h)$ so
$$e_H = f(g)f(h)^{-1} = f(g)f(h^{-1}) = f(gh^{-1}).$$
We have that $gh^{-1} \in$ Ker(f) = \{e_G\} so $gh^{-1} = e_G$ and we conclude $g = h$. Thus f is one-to-one.
So a group homomorphism has trivial kernel if and only if it is one-to-one.

(4) Recall that the centre $Z(G)$ of a group G is defined as follows:
$$Z(G) := \{ h \in G \mid hg = gh \text{ for every } g \in G \}.$$
In the previous assignment you showed that $Z(G)$ is a subgroup of G. Now show that any subgroup $K \subset Z(G)$ is normal in G.

Solution: Let $g \in G$. For all $k \in K$ we have $gk = kg$ and thus
$$gkg^{-1} = k \in K.$$
This shows that K is a normal subgroup of G.

(5) Suppose G is a group, H is a subgroup and g is an element of G. In the previous assignment you showed that $H^g := \{ ghg^{-1} \mid h \in H \}$ is a subgroup of G. Now show that the intersection $K := \bigcap_{g \in G} H^g$ is a normal subgroup of G.

Solution: Let H be a subgroup of G and $K = \bigcap_{g \in G} H^g$. Let $a \in G$. We have
$$aKa^{-1} = a \left(\bigcap_{g \in G} H^g \right) a^{-1} = \bigcap_{g \in G} aH^g a^{-1} = \bigcap_{g \in G} H^{ag} = K.$$
The last equality is a consequence of the fact that the function $g \mapsto a^{-1}g$ is onto. Thus, for a fixed a, H^{ag} ranges over all conjugates of H, as g ranges over G. We conclude that K is normal in G.

(6) Show that a subgroup H of G is normal if and only if it has the following property: for any $x, y \in G$ such that $xy \in H$, we also have $yx \in H$.

Hint: This is an "if and only if statement". You need to show that (i) every normal subgroup of G has the above property, and (ii) every subgroup of G which has this property is normal.

Solution: Let G be a group.
• Let H be a subgroup of G with the property that if $xy \in H$ then $yx \in H$. Let us prove that H is normal. Let $g \in G$ and $h \in H$. Take $x = hg^{-1}$ and $y = g$. We have $xy = hg^{-1}g = h \in H$ so by the property, we have $yx = ghg^{-1} \in G$. So for every $g \in G$ and every $h \in H$, we have $ghg^{-1} \in H$. In other words, H is normal in G.
• Assume that H is normal. Let $x, y \in G$ such that $xy \in H$. Since H is normal we also have $yx = x^{-1}(xy)x \in H$, as desired.
(7) Let G be a group and H be a normal subgroup of G. Assume that H is finite and cyclic. Show that every subgroup of H is also normal in G.

Solution: Let K be a subgroup of H of order d. We want to show that K is normal in G.

Let $g \in G$. We have $gKg^{-1} \subseteq gHg^{-1} = H$ since H is normal in G. Therefore, gKg^{-1} is a subgroup of H, isomorphic to K via the group isomorphism $x \mapsto gxg^{-1}$. In particular, gKg^{-1} also has order d. Since H is a finite cyclic group, it only has one subgroup of order d. Thus, $gKg^{-1} = K$ for all $g \in G$. This shows that K is normal in G.

(8) Let G be a finite group and H be a subgroup of index $[G:H] = n$. Recall that $[G:H]$ is the number of left cosets of H in G.

(a) If H is a normal subgroup of G, show that $x^n \in H$ for every $x \in G$.

(b) Give an example, showing that if H is not assumed to be normal, the assertion of part (a) may fail. Let G be a finite group and H be a subgroup of index $[G:H] = n$. Recall that $[G:H]$ is the number of left cosets of H in G.

(a) If H is a normal subgroup of G, show that $x^n \in H$ for every $x \in G$.

(b) Give an example, showing that if H is not assumed to be normal, the assertion of part (a) may fail.

Solution:

(a) Let $x \in G$. Since H is normal, G/H is a group of order $[G:H] = n$. By Lagrange theorem, $x^n H = (xH)^n = H$ is the identity element of G/H. We conclude that $x^n \in H$.

(b) Let $G = S_3$ and $H = \{id, (1\ 2)\}$. Then $[G:H] = \frac{|G|}{|H|} = \frac{6}{2} = 3$. Set $x := (2\ 3)$. Then $x^3 = (2\ 3)^3 = (2\ 3) \notin H$.

(9) Show that $V = \{id, (1\ 3)(2\ 4), (1\ 4)(2\ 3), (1\ 2)(3\ 4)\}$ is a normal subgroup of S_4.

Solution: For notational convenience, let us set

\[
a := (1\ 3)(2\ 4), \quad b := (1\ 4)(2\ 3) \quad \text{and} \quad c := (1\ 2)(3\ 4).
\]

Let us check first that V is a subgroup of S_4.

- **V is not empty:** Clear.
- **V is closed under inversion:** An easy computation shows that $id^2 = a^2 = b^2 = c^2 = id$. Thus every element of V is its own inverse. Consequently, V is closed under taking inverses.
- **V is closed under composition:** We want to show that if $\sigma, \tau \in V$, then $\sigma \tau \in V$. This is clear if $\sigma = id$, $\tau = id$ or $\sigma = \tau$. To prove that $\sigma \tau \in V$ for $\sigma, \tau = a, b, c$, we first check, by explicitly composing a and b, that $ab = ba = c$. Now $ac = a(ab) = b \in V$, $ca = (ab)a = a(ab) = b \in V$, and similarly $bc = b(ba) = a \in V$, $cb = (ab)b = a \in V$.

This proves that V is a subgroup of S_4.

It remains to show that V is normal in S_4. That is, we want to show that for any $\tau \in V$ and any $\sigma \in S_4$,

$$\sigma \tau \sigma^{-1} \in V.$$

If $\tau = \text{id}$, this is clear: $\sigma \text{id} \sigma^{-1} = \text{id} \in V$. Thus we may assume that $\tau = a, b$ or c, i.e., τ is a product of two disjoint 2-cycles, $\tau = (i \ j)(k \ \ell) \in V$, where i, j, k and ℓ are 1, 2, 3, and 4, up to reordering. Note that V contains every permutation of this form. Now

$$\sigma(i \ j)(k \ \ell)\sigma^{-1} = \sigma(i \ j)\sigma^{-1}\sigma(k \ \ell)\sigma^{-1} = (\sigma(i) \ \sigma(j))(\sigma(k) \ \sigma(\ell)) \in V$$

is again a product of disjoint 2-cycles and hence, is an element of V. This shows that V is a normal subgroup of S_4.

(10) Suppose G is a finite group, and H is a normal subgroup of G. Assume $|H| = m$ and $[G : H] = n$. If $\gcd(m, n) = 1$, show that $|H|$ is the only subgroup of G of order m.

Solution: Let K be a subgroup of G of order m. Our goal is to show that $K \subset H$. If we can do this, then since $|K| = |H| = m$, we will conclude that $K = H$, and the problem will be solved.

To prove that $K \subset H$, consider the image of K under the quotient homomorphism $\pi : G \to G/H$, defined by $\pi(x) = xH$. We know that H is the kernel of π. Thus in order to show that $K \subset H$, it is enough to show that $K \subset \ker(\pi)$ or equivalently, that $\pi(k) = e_{G/H}$ for every $k \in K$.

We know that the order of $\pi(k)$ divides the order of k, which in turn, divides $m = |K|$. On the other hand, by Lagrange’s theorem, the order of $\pi(k)$ divides $|G/H| = n$. In summary, the order of $\pi(k)$ divides both m and n. Since $\gcd(m, n) = 1$, the order of $\pi(k)$ is 1, i.e., $\pi(k) = e_{G/H}$, as desired.