Problem Set 4. Due in class Thursday, November 3.
Math 322, Fall 2016

(1) Let G be a cyclic group of order pqr, where p, q and r are distinct primes. How many subgroups does G have (counting the trivial subgroup $\{e\}$ and G itself).

(2) Let G be a finite group, $d \geq 1$ be an integer, and $X = \{a \in G \mid o(a) = d\}$.

(a) Define a relation on X as follows: $(a, b) \in R$ if $<a> = $, i.e., the cyclic subgroup generated by a is the same as the cyclic subgroup generated by b. Show that R is an equivalence relation.

(b) Show that the number of elements of order d in G is a multiple of $\phi(d)$. Here ϕ denotes the Euler ϕ-function.

(3) Show that a homomorphism of groups $f : G \to H$ is one-to-one if and only if $\text{Ker}(f) = \{e\}$.

(4) Recall that the centre $Z(G)$ of a group G is defined as follows:

$$Z(G) := \{h \in G \mid hg = gh \text{ for every } g \in G\}.$$

In the previous assignment you showed that $Z(G)$ is a subgroup of G. Now show that any subgroup $K \subset Z(G)$ is normal in G.

(5) Suppose G is a group, H is a subgroup and g is an element of G. In the previous assignment you showed that $H^g := \{ghg^{-1} \mid h \in H\}$ is a subgroup of G. Now show that the intersection $K := \bigcap_{g \in G} H^g$ is a normal subgroup of G.

(6) Show that a subgroup H of G is normal if and only if it has the following property: for any $x, y \in G$ such that $xy \in H$, we also have $yx \in H$.

Hint: This is an "if and only if statement". You need to show that (i) every normal subgroup of G has the above property, and (ii) every subgroup of G which has this property is normal.

(7) Let G be a group and H be a normal subgroup of G. Assume that H is finite and cyclic. Show that every subgroup of H is also normal in G.

(8) Let G be a finite group and H be a subgroup of index $[G : H] = n$. Recall that $[G : H]$ is the number of left cosets of H in G.

(a) If H is a normal subgroup of G, show that $x^n \in H$ for every $x \in G$.

(b) Give an example, showing that if H is not assumed to be normal, the assertion of part (a) may fail.

(9) Show that $V = \{\text{id}, (1 \ 3)(2 \ 4), (1 \ 4)(2 \ 3), (1 \ 2)(3 \ 4)\}$ is a normal subgroup of S_4.

(10) Suppose G is a finite group, and H is a normal subgroup of G. Assume $|H| = m$ and $[G : H] = n$. If $\gcd(m, n) = 1$, show that $|H|$ is the only subgroup of G of order m.