Every non-empty subset of the positive integers has a least (i.e., the smallest) element.
Every non-empty subset of the positive integers has a least (i.e., the smallest) element.

This is one of the axioms of the natural numbers.
Suppose a is a fixed integer, and $P(a)$ is an assertion, that is either true or false for each integer $n \geq a$. We want to prove that $P(n)$ is true for each $n \geq a$.

The Principle of Mathematical Induction tells us that in order to prove this it is enough to

(i) Prove that $P(a)$ is true. This is called “the base case”.

(ii) Prove that for every $n \geq a$, if $P(n)$ is true, then $P(n+1)$ is also true. This is called “the induction step”.

If we can establish (i) and (ii), then property $P(n)$ will be true for every integer $n \geq a$. To see that this proof method is valid, denote the set of non-negative integers m such that $P(a+m)$ is false by S. The Well Ordering Principle now tells us that S has to be empty.
Mathematical induction

Suppose a is a fixed integer, and $P(a)$ is an assertion, that is either true or false for each integer $n \geq a$. We want to prove that $P(n)$ is true for each $n \geq a$.

The Principle of Mathematical Induction tells us that in order to prove this it is enough to

(i) Prove that $P(a)$ is true. This is called “the base case”.
Suppose a is a fixed integer, and $P(a)$ is an assertion, that is either true or false for each integer $n \geq a$. We want to prove that $P(n)$ is true for each $n \geq a$.

The Principle of Mathematical Induction tells us that in order to prove this it is enough to

(i) Prove that $P(a)$ is true. This is called “the base case”.

(ii) Prove that for every $n \geq a$, if $P(n)$ is true, then $P(n + 1)$ is also true. This is called “the induction step”.

Suppose a is a fixed integer, and $P(a)$ is an assertion, that is either true or false for each integer $n \geq a$. We want to prove that $P(n)$ is true for each $n \geq a$.

The Principle of Mathematical Induction tells us that in order to prove this it is enough to

(i) Prove that $P(a)$ is true. This is called “the base case”.
(ii) Prove that for every $n \geq a$, if $P(n)$ is true, then $P(n + 1)$ is also true. This is called “the induction step”.

If we can establish (i) and (ii), then property $P(n)$ will be true for every integer $n \geq a$. To see that this proof method is valid, denote the set of non-negative integers m such that $P(a + m)$ is false by S. The Well Ordering Principle now tells us that S has to be empty. induction to show that $S = \mathbb{N}$.
1. Show that \(1 + 3 + 5 + \cdots + (2n - 1) = n^2\) for every \(n \geq 1\).

2. Show that \(1 + q + q^2 + \cdots + q^n = \frac{q^{n+1} - 1}{q - 1}\) for any real number \(q \geq 0\).

3. Show that \(2^n > n^2\) for any \(n \geq 5\).

4. Show that \(n\) lines in general position subdivide the plane into \(\frac{n(n+1)}{2} + 1\) regions. Here is \(n\) is an integer \(\geq 1\).

5. Show that \(n^3 - n\) is divisible by 3 for any \(n \geq 0\).
Once again, assume that $P(n)$ is a statement that is true or false for each n.
Once again, assume that $P(n)$ is a statement that is true or false for each n. In order to prove that $P(n)$ is true for all $n \geq a$, it is enough to show that
Once again, assume that $P(n)$ is a statement that is true or false for each n. In order to prove that $P(n)$ is true for all $n \geq a$, it is enough to show that

1) $P(a)$ is true. This is called “the base case”.
Once again, assume that $P(n)$ is a statement that is true or false for each n. In order to prove that $P(n)$ is true for all $n \geq a$, it is enough to show that

(1) $P(a)$ is true. This is called “the base case”.

(2) Show that if $P(1), \ldots, P(n)$ are all true for some $n \geq a$, then $P(n + 1)$ is also true. This is called “the induction step”.

1. Show that every integer $n \geq 2$ is either a prime or a product of two or more primes.

2. Any integer amount of postage of 12 cents or more, can be paid using only 3-cent and 5-cent stamps.

3. The nth Fibonacci number a_n is defined by the recursive formula $a_1 = a_2 = 1$, $a_{n+2} = a_{n+1} + a_n$. Show that

$$a_n = \frac{1}{\sqrt{5}}(\alpha^n - \beta^n)$$

for any $n \geq 1$. Here

$$\alpha = \frac{1 + \sqrt{5}}{2} \text{ and } \beta = \frac{1 - \sqrt{5}}{2}.$$
1. Show that every integer \(n \geq 2 \) is either a prime or a product of two or more primes.

2. Any integer amount of postage of 12 cents or more, can be paid using only 3-cent and 5-cent stamps.

3. The \(n \)th Fibonacci number \(a_n \) is defined by the recursive formula
 \[a_1 = a_2 = 1, \ a_{n+2} = a_{n+1} + a_n. \]
 Show that
 \[a_n = \frac{1}{\sqrt{5}} (\alpha^n - \beta^n) \]
 for any \(n \geq 1 \). Here
 \[\alpha = \frac{1 + \sqrt{5}}{2} \text{ and } \beta = \frac{1 - \sqrt{5}}{2}. \]
 Note that \(\alpha \) and \(\beta \) are the roots of the quadratic equation \(x^2 - x - 1 = 0 \).
Strong mathematical induction exercises

1. Show that every integer \(n \geq 2 \) is either a prime or a product of two or more primes.

2. Any integer amount of postage of 12 cents or more, can be paid using only 3-cent and 5-cent stamps.

3. The \(n \)th Fibonacci number \(a_n \) is defined by the recursive formula
 \[a_1 = a_2 = 1, \ a_{n+2} = a_{n+1} + a_n. \]
 Show that
 \[a_n = \frac{1}{\sqrt{5}}(\alpha^n - \beta^n) \]
 for any \(n \geq 1 \). Here
 \[\alpha = \frac{1 + \sqrt{5}}{2} \text{ and } \beta = \frac{1 - \sqrt{5}}{2}. \]

 Note that \(\alpha \) and \(\beta \) are the roots of the quadratic equation \(x^2 - x - 1 = 0 \).
 That is, \(\alpha^2 = \alpha + 1 \) and \(\beta^2 = \beta + 1 \). These formulas will facilitate the induction step.
Remark

The well-ordering principle, the principle of mathematical induction and the principle of strong mathematical induction are all equivalent to each other.