Problem 1: (a) Use mathematical induction to show that

\[\prod_{i=2}^{n} \left(1 - \frac{1}{i^2}\right) = \frac{n+1}{2n} \]

for every \(n \geq 2 \). Recall that \(\prod_{i=2}^{n} \left(1 - \frac{1}{i^2}\right) \) denotes the product \((1 - \frac{1}{4})(1 - \frac{1}{9}) \ldots (1 - \frac{1}{n^2})\).

(b) Let \(a_1, a_2, a_3, a_4, \ldots \) be the integer sequence defined recursively by \(a_1 = 1, a_2 = 8, \) and \(a_n = a_{n-1} + 2a_{n-2} \) for every \(n \geq 3 \). Use mathematical induction to show that

\[a_n = 3 \cdot 2^{n-1} + 2(-1)^n \]

for every \(n \geq 1 \).

Solution: (a) Base case: \(n = 2 \). The product on the left hand side of the formula has only one factor, \(1 - 1/4 \), and the right hand side is \(3/4 \). Thus the right hand side and the left hand side are equal when \(n = 1 \).

Induction step: Suppose \(\prod_{i=2}^{n} \left(1 - \frac{1}{i^2}\right) = \frac{n+1}{2n} \) for some \(n \geq 2 \). We want to show that the same formula holds when we replace \(n \) by \(n + 1 \).

Multiply both sides by \(1 - \frac{1}{(n+1)^2} \):

\[\left(1 - \frac{1}{(n+1)^2}\right) \prod_{i=2}^{n} \left(1 - \frac{1}{i^2}\right) = \left(1 - \frac{1}{(n+1)^2}\right) \frac{n+1}{2n}. \]

The left hand side is \(\prod_{i=2}^{n+1} \left(1 - \frac{1}{i^2}\right) \), which is the quantity we are interested in. It remains to show that the right hand side is \(\frac{(n+1) + 1}{2(n+1)} \), i.e., \(\frac{n+2}{2(n+1)} \). Indeed,

\[\left(1 - \frac{1}{(n+1)^2}\right) \frac{n+1}{2n} = \frac{(n+1)^2 - 1}{(n+1)^2} \cdot \frac{n+1}{2n} = \frac{n^2 + 2n + 1}{n+1} \cdot \frac{1}{2n} = \frac{n+2}{2(n+1)}, \]

as desired. This completes the induction step.

(b) Let \(b_n = 3 \cdot 2^{n-1} + 2(-1)^n \). Our goal is to show that \(a_n = b_n \) for every \(n \geq 1 \).

We will use strong induction on \(n \). Consider two base cases: \(n = 1 \) and \(n = 2 \). Using the formula for \(b_n \), we see that \(b_1 = 3 \cdot 2^{-1} + 2 \cdot (-1)^1 = 3 - 2 = 1 = a_1 \) and \(b_2 = 3 \cdot 2^1 + 2 \cdot (-1)^2 = 3 \cdot 2 + 2 = 8 = a_2 \).

For the induction step, assume that \(n \geq 3 \). The induction assumption is that \(a_m = b_m \) for every \(1 \leq m \leq n - 1 \). We want to show that \(a_n = b_n \). Setting \(m = n - 2 \) and \(n - 1 \), we obtain \(a_{n-2} = b_{n-2} \) and \(a_{n-1} = b_{n-1} \). Thus \(a_n = a_{n-1} + 2a_{n-2} = b_{n-1} + 2b_{n-2} \). Using the formula for \(b_{n-2} \) and \(b_{n-1} \), we see that

\[
\begin{align*}
b_{n-1} + 2b_{n-2} &= 3 \cdot 2^{n-2} + 2 \cdot (-1)^{n-1} + 2(3 \cdot 2^{n-3} + 2 \cdot (-1)^{n-2}) \\
&= 2^{n-3}(3 \cdot 2 + 3 \cdot 2) + 2 \cdot (-1)^{n-1} \cdot 1 \\
&= 3 \cdot 2^{n-1} + 2 \cdot (-1)^n = b_n,
\end{align*}
\]

as desired.
Problem 2: (a) Find all integers \(x \) satisfying \(84x \equiv 5 \pmod{49} \).
(b) Find all integers \(y \) satisfying \(12y \equiv 4 \pmod{14} \).

Solution: (a) \(\gcd(84, 49) = 7 \) does not divide 5, so this congruence has no solutions.
(b) \(\gcd(12, 14) = 2 \) divides 4, so there will be solutions. As we showed in class, \(12y \equiv 4 \pmod{14} \) is equivalent to \(6y \equiv 2 \pmod{7} \). Since \(6 \equiv -1 \pmod{7} \), this is the same as \(-y \equiv 2 \pmod{7} \) or equivalently, \(y \equiv -2 \pmod{7} \) or \(y \equiv 5 \pmod{7} \). In summary, \(y = 5 + 7n \), where \(n \) is an integer.

Problem 3: Consider the linear Diophantian equation \(13x + 17y = 1000 \).
(a) Find the general solution \((x, y)\) to this equation, i.e., a formula describing all integer solutions.
(b) How many pairs of positive integers \((x, y)\) satisfy this equation?

Solution: (a) A particular solution to \(13x + 17y = 4 \) is \((-1, 1)\). Multiplying by 250, we see that \((-250, 250)\) is a particular solution to \(13x + 17y = 1000 \). A general solution to \(13x + 17y = 1000 \) is thus
\[
x = -250 + 17t \quad \text{and} \quad y = 250 - 13t,
\]
where \(t \) runs over the integers.
(b) We want to choose \(t \) so that \(x > 0 \) and \(y > 0 \). That is, \(17t > 250 \) and \(13t < 250 \).
Thus there are five solutions \((x, y)\) with \(x, y \) positive integers, corresponding to \(t = 15, 16, 17, 18, 19 \).

I did not ask you to list the solutions on the exam, but I will list them here, so that you can see more clearly what is going on. Every time we increase \(t \) by 1, we add 17 to \(x \) and subtract 13 from \(y \).
\[
t = 15: \quad x = -250 + 17 \cdot 15 = 5, \quad \text{and} \quad y = 250 - 13 \cdot 15 = 55.
\]
\[
t = 16: \quad x = 22 \quad \text{and} \quad y = 42,
\]
\[
t = 17: \quad x = 39 \quad \text{and} \quad y = 29,
\]
\[
t = 18: \quad x = 56 \quad \text{and} \quad y = 16,
\]
\[
t = 19: \quad x = 73 \quad \text{and} \quad y = 3.
\]

Problem 4: Recall that \(n \) is called a perfect cube if \(n = x^3 \) for some positive integer \(x \).
For example, 1, 8, 27, 64 and 125 are perfect cubes, where as 4, 5, 12, 20 and 100 are not.
(a) Let \(n = p_1^{d_1} \cdots p_r^{d_r} \), where \(p_1, \ldots, p_r \) are distinct primes and \(d_1, \ldots, d_r \) are non-negative integers. Complete the following statement and prove it.
\[
n \text{ is a perfect cube if and only if } d_1, \ldots, d_r \text{ are } \ldots
\]
(b) Suppose \(n \) be a positive integer. Show that if \(n^2 \) is a perfect cube, then \(n \) is also a perfect cube.
(c) Suppose \(a, b \) and \(c \) are positive integers. Show that if \(ab, ac \) and \(bc \) are perfect cubes, then \(a, b \) and \(c \) are also perfect cubes.

Solution: (a) \(n \) is a perfect cube if and only if \(d_1, \ldots, d_r \) are all divisible by 3.
Proof: If \(n = x^3 \) is a perfect cube, write \(x = q_1^{e_1} \cdots q_s^{e_s} \), where \(q_1, \ldots, q_s \) are distinct primes and \(e_1, \ldots, e_s \geq 1 \). Then \(n = x^3 = q_1^{3e_1} \cdots q_s^{3e_s} \). By the Fundamental Theorem of
Arithmetic, the prime decomposition of n is unique. Thus the non-zero exponents among d_1, \ldots, d_r are $3e_1, \ldots, 3e_r$, and each of them is divisible by 3.

Conversely, suppose each of the exponents d_1, \ldots, d_r is divisible by 3. Then $d_1 = 3e_1$, $\ldots, d_r = 3e_r$ for some non-negative integers e_1, \ldots, e_r. Then $x = p_1^{e_1} \cdots p_r^{e_r}$ is a positive integer, and $n = x^3$ is a perfect cube.

(b) Suppose $n^2 = p_1^{2d_1} \cdots p_r^{2d_r}$ is a perfect cube. Then by part (a), $2d_1, \ldots, 2d_r$ are all divisible by 3. In other words, $2d_i \equiv 0 \pmod{3}$ for $i = 1, \ldots, r$. Since $\gcd(2, 3) = 1$, this is only possible if each $d_i \equiv 0 \pmod{3}$. By part (a), we conclude that n is a perfect cube.

(c) Write $a = p_1^{d_1} \cdots p_r^{d_r}$, $b = p_1^{e_1} \cdots p_r^{e_r}$ and $c = p_1^{f_1} \cdots p_r^{f_r}$. Since p_1, \ldots, p_r are distinct primes and $d_1, \ldots, d_r, e_1, \ldots, e_r, f_1, \ldots, f_r \geq 0$. Since

\[ab = p_1^{d_1+e_1} \cdots p_r^{d_r+e_r}, \]
\[ac = p_1^{d_1+f_1} \cdots p_r^{d_r+f_r}, \]
\[bc = p_1^{e_1+f_1} \cdots p_r^{e_r+f_r} \]

are perfect cubes, part (a) tells us that,

\[d_i + e_i \equiv d_i + f_i \equiv e_i + f_i \equiv 0 \pmod{3} \]

for every $i = 1, \ldots, r$. Thus

\[2(d_i + e_i + f_i) \equiv (d_i + e_i) + (d_i + f_i) + (e_i + f_i) \equiv 0 \pmod{3}. \]

Since $2 \equiv -1 \pmod{3}$, we conclude that $d_i + e_i + f_i \equiv 0 \pmod{3}$ for each i. Now

\[d_i = (d_i + e_i + f_i) - (e_i + f_i) \equiv 0 - 0 \equiv 0 \pmod{3}. \]

Similarly, $e_i \equiv 0 \pmod{3}$ and $f_i \equiv 0 \pmod{3}$ for each i. Using part (a), we conclude that a, b and c are perfect cubes.

Problem 5: Find all integers x between 0 and 500 satisfying the following system of congruences

\[
\begin{align*}
x &\equiv 2 \pmod{3}, \\
x &\equiv 3 \pmod{5}, \\
x &\equiv 4 \pmod{7}.
\end{align*}
\]

Solution: Recall that by the Chinese Remainder Theorem,

\[x \equiv a_1y_1N_1 + a_2y_2N_2 + a_3y_3N_3 \pmod{N} \]

where

\[
\begin{align*}
a_1 &= 2, \quad a_2 = 3, \quad a_3 = 4, \\
N &= 3 \cdot 5 \cdot 7 = 105, \\
N_1 &= 5 \cdot 7 = 35, \\
N_2 &= 3 \cdot 7 = 21, \\
N_3 &= 3 \cdot 5 = 15, \\
y_1 &\equiv (N_1)^{-1} \equiv (-1)^{-1} \equiv -1 \pmod{3}, \\
y_2 &\equiv (N_2)^{-1} \equiv 1^{-1} \equiv 1 \pmod{5}, \text{ and} \\
y_3 &\equiv (N_3)^{-1} \equiv 1 \pmod{7}.
\end{align*}
\]

Putting it all together,

\[x \equiv 2 \cdot (-1) \cdot 35 + 3 \cdot 1 \cdot 21 + 4 \cdot 1 \cdot 15 \equiv -70 + 63 + 60 \equiv 53 \pmod{105}. \]
In other words, $x = 53 + 105t$.

The condition that $0 \leq x \leq 500$ is satisfied only when $t = 0, 1, 2, 3$ or 4, so that $x = 53, 158, 263, 368$ or 473.

Problem 6: How many integers x between 1 and n satisfy $x^2 \equiv 1 \pmod{n}$, if

(a) $n = 8$?
(b) $n = pq$, where p and q are distinct odd primes?
(c) $n = 8p$, where p is an odd prime?

Hint: In parts (b) and (c) use the Chinese Remainder Theorem.

Solution:

(a) Clearly any x satisfying $x^2 \equiv 1 \pmod{8}$ has to be odd. The only possibilities are $x = 1, 3, 5, 7 \pmod{8}$. We can square each of them easily and find that $x^2 \equiv 1 \pmod{8}$ for each of them. (Check!) Thus there are four solutions.

(b) By the Chinese Remainder Theorem (CRT), $x^2 \equiv 1 \pmod{pq}$ if and only if $x^2 \equiv 1 \pmod{p}$ and $x^2 \equiv 1 \pmod{q}$. As we showed in class, the first congruence has two solutions, $x \equiv \pm 1 \pmod{p}$. Similarly $x^2 \equiv 1 \pmod{q}$ is equivalent to $x \equiv \pm 1 \pmod{q}$. In summary, $x^2 \equiv 1 \pmod{pq}$ if and only if x satisfies one of the following systems

$$\begin{align*}
x \equiv 1 & \pmod{p}, \\
x \equiv 1 & \pmod{q},
\end{align*}$$

or

$$\begin{align*}
x \equiv -1 & \pmod{p}, \\
x \equiv 1 & \pmod{q},
\end{align*}$$

or

$$\begin{align*}
x \equiv 1 & \pmod{p}, \\
x \equiv -1 & \pmod{q},
\end{align*}$$

or

$$\begin{align*}
x \equiv -1 & \pmod{p}, \\
x \equiv -1 & \pmod{q},
\end{align*}$$

Each of these system has a unique solution modulo pq. This solution is $x = 1$ for the first system and $x = -1$ for the second one; the other two are difficult to describe explicitly (but nevertheless we know that they exist by the CRT). Hence, $x^2 \equiv 1 \pmod{pq}$ has 4 distinct solutions modulo $n = pq$. In other words, there are 4 integers x between 1 and n such that $x^2 \equiv 1 \pmod{n}$.

(c) Same reasoning as in part (b), but with q replaced by 8. Here $x^2 \equiv 1 \pmod{8p}$ is equivalent to $x^2 \equiv 1 \pmod{8}$

$$\begin{align*}
x^2 & \equiv 1 \pmod{8}, \\
x^2 & \equiv 1 \pmod{p}.
\end{align*}$$

The first congruence has 4 solutions, $1, 3, 5, 7 \pmod{8}$, the second has two solutions $x = \pm 1 \pmod{p}$. Once we know what x is modulo 8 and modulo p, the CRT allows us to combine the into $4 \cdot 2 = 8$ different solutions modulo $n = 8p$. modulo $n = pq$. In other words, for $n = 8p$ there are 8 integers x between 1 and n such that $x^2 \equiv 1 \pmod{n}$.