The division algorithm

Let $a \geq 1$ be an integer. For any integer n there exist integers q and r such that $n = aq + r$ and $0 \leq r \leq a-1$. Moreover, q and r are uniquely determined by n and a.

Remarks: (1) Division algorithm is a theorem, not an algorithm. An algorithm for finding q and r in the case where n is positive, is called long division.

(2) n is divisible by a if and only if $r=0$. One direction is obvious: if $r=0$, then $n = aq$ is divisible by a. Conversely, if n is divisible by a, say $n = ab$, then $n = aq + r$. By the uniqueness part of theorem, $b = q$, $r = 0$.
(3) If \(n \geq 0 \), then the division algorithm is the same thing as writing \(\frac{n}{a} \) as a mixed fraction: \(\frac{n}{a} = q + \frac{r}{a} \).

Proof using well-ordering principle:

First assume that \(n \geq 0 \). We want to show that there exist integers \(q \) and \(r \) such that \(n = aq + r \), and \(0 \leq r \leq a-1 \). Assume the contrary: not every \(n \geq 1 \) can be written this way. By well-ordering principle there exists smallest such \(n \).

Claim: \(n \geq a \).

Indeed, any \(0 \leq m \leq a-1 \) can be written as \(n = a \cdot 0 + n \), with \(q = 0 \) and \(r = n \). This proves claim.

Now \(0 \leq n - a < n \). Thus \(n - a = aq + r \) where \(0 \leq r \leq a-1 \). Now \(n = a(q + 1) + r \)
This shows that \(n \) can be written in the form \(aq + r \) with \(0 \leq r \leq a-1 \), contrary to our assumption. This proves the existence part of division algorithm for \(n \geq 0 \).

If \(n < 0 \), choose an integer \(x \) such that \(x \geq \frac{n}{a} \), say \(x = n \).

Replace \(n \) by \(n + xa \). By our choice of \(x \), \(n + xa \) is a positive integer.

Thus \(n + xa = aq + r \), for some integers \(q \), \(r \), with \(0 \leq r \leq a-1 \).

Now \(n = a(q-x) + r \) can be expressed in the form we want. This completes the proof of existence part of division algorithm.
For uniqueness, assume
\[n = aq_1 + r_1 \quad 0 \leq r_1 \leq a - 1 \]
\[n = aq_2 + r_2 \quad 0 \leq r_2 \leq a - 1 \]
May assume that \(r_1 \geq r_2 \); otherwise interchange \((q_1, r_1)\) and \((q_2, r_2)\).
Subtract: \[0 = a(q_1 - q_2) + (r_1 - r_2) \]
\[a(q_2 - q_1) = r_1 - r_2, \]
Multiple of a integer between 0 and a - 1
A contradiction, unless \(r_1 - r_2 = 0 \).
Thus \(r_1 = r_2 \) and \(a(q_2 - q_1) = 0 \)
\[q_1 = q_2. \] This proves uniqueness
Q.E.D.
Examples: (1) \(n = 30, \ a = 7 \).
What are \(q \) and \(r \) in this case?
\(q = 4, \ r = 2 \) \hspace{1cm} 30 = 7 \cdot 4 + 2

\[
\frac{30}{7} = 4 + \frac{2}{7}
\]

(2) \(n = 17, \ a = 3 \). What are \(q \) and \(r \)?
\(q = 5, \ r = 2 \) \hspace{1cm} 17 = 3 \cdot 5 + 2

(3) \(n = -17, \ a = 3 \)
\(q = -6, \ r = 1 \) \hspace{1cm} -17 = 3 \cdot (-6) + 1
Primes: 2, 3, 5, 7, 11, 13, 17, ...

No formula for the nth prime.

Theorem (Euclid): There are infinitely many primes.

Proof: Assume the contrary: there are only finitely many primes, p_1, \ldots, p_k. Let

$$n = p_1 p_2 \cdots p_k + 1$$

$n > p_1, \ldots, p_k \Rightarrow n$ is not a prime.

Last time we showed that n is a product of primes. Thus n is divisible by some prime, say by p_i.

On the other hand

$$n = p_i (p_1 \cdots p_{i-1} p_{i+1} \cdots p_k) + 1$$

remainder
This shows that \(n \) is not divisible by \(p_i \), a contradiction. Q.E.D.

Example: \(2 \cdot 3 \cdot 5 + 1 = 31 \) new prime
\(2 \cdot 3 \cdot 5 \cdot 7 + 1 = 211 \) another prime

A better practical way to generate primes: sieve of Eratosthenes.

Key idea: If \(n = a \cdot b \) is composite, then at least one of \(a, b \) is \(\leq \sqrt{n} \).

To find primes \(\leq 25 \), only need to check divisibility by 2, 3, and 5.
Cross out numbers divisible by 2 (starting from 4)
by 3 (starting from 6)
by 5 (starting from 10)

Primes: 2, 3, 5, 7, 11, 13, 17, 19, 23

Can repeat this to find all primes up to 625.
Prime number theorem:

The number of primes in \([2, x]\) is approx. \(\frac{x}{\ln(x)}\).

In other words, the probability that a randomly selected integer in \([2, x]\) is a prime is \(\frac{1}{\ln x}\) (for large \(x\)).