Elementary functions
- Polynomials
- Rational functions
- Exponential
- Trig. functions

Extend each type of function from \(\mathbb{R} \) to \(\mathbb{C} \).

Today: Logarithmic + power functions, inverse trig. functions

Logarithmic Function

Inverse to exponential function

\[z \rightarrow e^z \]

\[\log(z) = w \text{ means } e^w = z. \]

Suppose \(z = r e^{i\theta} \) is given.

Want to solve \(e^w = z \) for \(w \).
Write $w = a + bi$, $a, b - \text{real}$.

$$e^w = e^a \cdot e^{bi} = z = re^{i\theta} \quad r = |z|$$

polar form of e^w

polar form of z

Thus $r = e^a$

$$b = \theta + 2\pi k, \quad k \in \mathbb{Z}$$

$$\begin{cases} a = \ln(r) \quad \text{Here } \ln(r) \text{ is the} \\ b = \theta + 2\pi k \quad \text{natural log of} \\
\end{cases}$$

the positive real no. r.

$$\begin{cases} a = \ln |z| \\ b = \arg(z) - \text{multi-valued} \end{cases}$$

$\log(z)$ denotes the set of all values

$\log(z)$ principal value, with $\arg(z)$ replaced by $\text{Arg}(z) \in (-\pi, \pi]$

$$\log(z_1 z_2) = \log(z_1) + \log(z_2)$$

$$\log\left(\frac{z_1}{z_2}\right) = \log(z_1) - \log(z_2)$$
These equalities fail if we replace \(\log \) by \(\Log \).

Theorem: (a) \(\Log(z) \) is analytic in the domain \(D = \mathbb{C} \setminus \{ \text{non-positive real axis} \} \).

(b) \(\frac{d}{dz} \Log(z) = \frac{1}{z} \) for every \(z \) in \(D \).

Proof: (a) Check that \(f(z) = \Log(z) \) satisfies the Cauchy-Riemann equations for every \(z \in D \). Will use the C-R. equations in polar form (from HW problem).

\[
\begin{align*}
 f(z) &= u(r, \Theta) + v(r, \Theta) i \\
 \frac{\partial u}{\partial r} &= \frac{1}{r} \frac{\partial v}{\partial \Theta}, \quad \frac{\partial v}{\partial r} = -\frac{1}{r} \frac{\partial u}{\partial \Theta} \\
 r &= |z|, \quad \Theta = \text{Arg}(z)
\end{align*}
\]
In our case \(f(z) = \log(z) = \frac{\ln(r) + \Theta i}{\sqrt{r}} \)

\[
\frac{\partial u}{\partial r} = \frac{1}{r}, \quad \frac{\partial u}{\partial \Theta} = 0
\]

\[
\frac{\partial v}{\partial r} = 0, \quad \frac{\partial v}{\partial \Theta} = 1.
\]

The C-R equations are satisfied.

Thus \(\log(z) \) is differentiable at every point of \(D \).

(b) \(e^{\log(z)} = z \). Differentiate both sides:

\[
e^{\log(z)} \cdot \frac{d}{dz} \log(z) = 1
\]

\[
z \cdot \frac{d}{dz} \log(z) = 1
\]

\[
\frac{d}{dz} \log(z) = \frac{1}{z}, \text{ as claimed.}
\]
Corollary: a) $z \to \ln |z|$ is harmonic in the plane, with 0 removed.

(b) $z \to \text{Arg}(z)$ is harmonic in $D = \mathbb{C} \setminus \text{(non-positive real axis)}$.

The function in (a) can be rewritten as $f(x,y) = \ln \sqrt{x^2+y^2} = \frac{1}{2} \ln(x^2+y^2)$

Example: Where is the function $f(z) = \log(4z^2-y)$ differentiable, and what is the derivative $f'(z)$?

Solution: Need to exclude z values, where $4z^2-y$ is a non-positive real no.

Write $4z^2-y = -x$, where $x \geq 0$.

$z^2 = \frac{4-x}{4}$

Case 1: $x \in [0,4]$. Then z is a real number between -1 and 1.
Case 2: $x \geq y$. Here z is any purely imaginary number.

Thus need to exclude the y-axis and the interval $[-1, 1]$ on x-axis.

$f(z)$ is analytic in $D = \mathbb{C} \setminus \left(\text{Y-axis, interval } [-1, 1] \text{ on x-axis} \right)$.

For z in D, $f'(z)$ can be computed by chain rule:

$$f'(z) = \frac{1}{4z^2 - 4} \cdot 8z = \frac{2z}{z^2 - 1}.$$

Branch chasing
Another example:

Compare \(\log(4z^2-4) \) with \(\log(2z+2) + \log(2z-2) \).

\(\log(4z^2-4) \) is differentiable in \(\mathbb{C} \setminus \left\{ \text{y-axis interval} \left\{ \left[-1, 1 \right] \right\} \text{on x-axis} \right\} \).

\(\log(2z+2) \) is differentiable in \(\mathbb{C} \setminus \left\{ \text{interval} \left(-\infty, -1 \right] \right\} \text{on x-axis} \).

\(\log(2z-2) \) is differentiable in \(\mathbb{C} \setminus \left\{ \text{interval} \left(-\infty, 1 \right] \right\} \text{on x-axis} \).
\[\log(4z^2 - 4) \quad \log(2z+2) + \log(2z-2) \]

The complex power function

\(f(z) = z^\alpha \). Know what \(z^\alpha \) is when \(\alpha \) is an integer. Also considered the case, where \(\alpha = \frac{1}{n} \) (\(n \) th root of \(z \)).

What if \(\alpha \) is an arbitrary complex number? For example, what is \(i \)?

Write \(z^\alpha = e^{\log(z^\alpha)} = e^{\alpha \log(z)} \).

Multi-valued in general, because \(\log(z) \) is multi-valued.
Example: What is i^i?

\[i^i = e^{i \log(i)} \]

\[i = 1 \cdot e^{\frac{\pi i}{2}} \cdot \log(i) = \ln(1) + \frac{\pi}{2} i + 2\pi ki \]

\[i^i = e^{i \log(i)} = e^{\left(-\frac{\pi i}{2} + 2\pi ki\right)} \]

Surprise: all values of i^i are real and positive!

Principal value of i^i is obtained by choosing the value $\log(i) = \frac{\pi i}{2}$ among the infinitely many values of $\log(i)$. Thus \[i^i = e^{-\pi/2} \]

If $\lambda = \frac{1}{n}$, we recover the formula for nth roots of $z = re^{i\theta}$. Here \[\log(z) = \ln(r) + 2\pi i k, \quad k \text{-integer} \]
\[z^{\frac{1}{n}} = e^{\frac{1}{n} \log(z)} = e^{\frac{1}{n} \left(\ln(r) + \Theta i + 2\pi k i \right)} \\
= e^{\frac{1}{n} \ln(r)} e^{\frac{1}{n} (\Theta + 2\pi k) i} \\
= r^{\frac{1}{n}} e^{\frac{1}{n} (\Theta + 2\pi k) i}, \quad k \text{-integer.} \\
\]

\[n \text{ distinct values for } k = 0, 1, 2, \ldots, n-1. \]

Theorem: Let \(z \neq 0 \) be a complex number.

Then \(z^x \) assumes

- one value if \(x \) is a (real) integer
- finitely many values if \(x \) is a (real) rational number
- infinitely many values in all other cases.