5.1.15. First assume that $L < 1$. The argument outlined in the hint shows that there exists an integer $J > 0$ and a real number $0 < m < 1$ such that $c_{j+1}/c_j < m$ for all $j \geq J$. Now let

$$M_k = |c_j|m^{k-J} = \frac{|c_j|}{m^J}m^k.$$

Then for any $j \geq J$,

$$|c_j| \leq M_j$$

(see the hint). Since

$$\sum_{j=0}^{\infty} M_j = \frac{c_j}{m^J} \sum_{k=0}^{\infty} m^k$$

converges (it is a geometric series), the series $\sum_{j=0}^{\infty} c_j$ also converges by the comparison test.

Now assume that $L > 1$. In this case there exists an integer $J \geq 0$ such that $|c_{j+1}|/c_j > 1$ for any $j \geq J$. That is,

$$|c_{j+1}| > |c_j| > |c_{j-1}| > \ldots > |c_J|.$$

This tells us that

$$\lim_{n \to \infty} |c_j| \neq 0.$$

Thus the series $\sum_{j=0}^{\infty} c_j$ diverges by the nth term test.

5.2.4. $f(z) = e^{\alpha \Log(1+z)}$ is analytic in $|z| < 1$. Moreover, $f(0) = 1$,

$$f^{(j)}(z) = \alpha(\alpha - 1) \cdots (\alpha - j + 1)e^{(\alpha-j)\Log(1+z)}$$

$$f^{(j)}(0) = \alpha(\alpha - 1) \cdots (\alpha - j + 1),$$

and the claim follows.

5.2.14. Suppose the Taylor series for $f(z)$ in D is

$$f(z) = a_0 + a_1(z-z_0) + a_2(z-z_0)^2 + \ldots$$

Then $a_k = \frac{f^{(k)}(z_0)}{k!} = 0$ for $k = 0, 1, 2, \ldots$. Thus $f(z)$ is identically zero in D.
5.2.15. Arguing as in the previous exercise (with $z_0 = 0$), we see that

$$f(z) = a_0 + a_1 z + a_2 z^2 + a_3 z^3 + \ldots$$

and

$$a_k = \frac{f^{(k)}(z_0)}{k!} = 0$$

whenever k is odd. Thus

$$f(z) = a_0 + a_2 z^2 + a_4 z^4 + a_6 z^6 + \ldots$$

and consequently, $f(-z) = f(z)$.

5.2.16. Note a typo in the statement of the problem: $p_n(z)$ is meant to be $p(z)$. Note also that

$$p(z) = c_0 + c_1 (z - 1) + \cdots + c_n (z - 1)^n$$

is a Taylor series for $p(z)$ at $z = 1$. Thus $c_j = \frac{p^{(j)}(1)}{j!}$. In particular,

$$c_0 = \frac{p(1)}{0!} = \sum_{j=0}^{n} a_j$$

$$c_1 = \frac{p'(1)}{1!} = a_1 + 2a_2 + \ldots + na_n,$$

$$c_2 = \frac{p''(1)}{2!} = 2 \cdot 1a_2 + 3 \cdot 2a_3 + \cdots + n(n-1)a_n,$$

etc. In general,

$$p^{(j)}(z) = j \cdot (j - 1) \cdots \cdot 2 \cdot 1 + (j + 1) \cdot j \cdots \cdot 2z + \cdots + n(n-1) \cdots (n-j+1)z^{n-j}$$

and thus

$$c_j = \frac{p^{(j)}(1)}{j!} = \frac{1}{j!} \cdot \left(j \cdot (j - 1) \cdots \cdot 2 \cdot 1 + (j + 1) \cdot j \cdots \cdot 2 + \cdots + n(n-1) \cdots (n-j+1) \right).$$

5.2.18. (a)

$$\left| e^z - \sum_{k=0}^{n} \frac{z^k}{k!} \right| = \left| \sum_{k=n+1}^{\infty} \frac{z^k}{k!} \right| \leq \sum_{k=n+1}^{\infty} \left| \frac{z^k}{k!} \right| \leq \sum_{k=n+1}^{\infty} \frac{1}{k!} = \sum_{j=0}^{\infty} \frac{1}{(n+j+1)!} = \sum_{j=0}^{\infty} \frac{1}{(n+j+1)!} \cdot \left(\frac{1}{n+2} \right)^j = \frac{1}{(n+1)!} \sum_{j=0}^{\infty} \left(\frac{1}{n+2} \right)^j.$$

Here $j = k - n - 1$. Using the formula for $\sum_{j=0}^{\infty} c^j = \frac{1}{1-c}$ with $c = \frac{1}{n+2}$, we see that

$$\sum_{j=0}^{\infty} \left(\frac{1}{n+2} \right)^j = \left(\frac{1}{1 - \frac{1}{n+2}} \right) = \frac{n+2}{n+1} = 1 + \frac{1}{n+1},$$

and part (a) follows.
(b) \[
\left| \sin(z) - \sum_{k=0}^{n} (-1)^{k} \frac{z^{2k+1}}{(2k+1)!} \right| = \sum_{k=n+1}^{\infty} \frac{(-1)^{k} z^{2k+1}}{(2k+1)!} = \\
\sum_{k=n+1}^{\infty} \left| (-1)^{k} \frac{z^{2(k+1)}}{(2k+1)!} \right| = \sum_{k=n+1}^{\infty} \frac{1}{(2k+1)!}.
\]
Setting \(j = k - n - 1 \), we obtain
\[
\sum_{k=n+1}^{\infty} \frac{1}{(2k+1)!} = \sum_{j=0}^{\infty} \frac{1}{(2n + 4j + 3)!} \left(1 + c + c^2 + c^3 + \ldots \right) \leq \frac{1}{(2n + 3)!} \left(1 + \frac{1}{1 + c} c + c^2 + c^3 + \ldots \right)
\]
where \(c = \frac{1}{(2n + 4)(2n + 5)} \). Once again, using the formula \(\sum_{j=0}^{\infty} c^j = \frac{1}{1-c} \) for the sum of the geometric series, we see that
\[
1 + c + c^2 + c^3 + \ldots = \frac{1}{1 - \frac{1}{(2n + 4)(2n + 5)}} = \frac{(2n + 4)(2n + 5)}{(2n + 4)(2n + 5) - 1} = \frac{4n^2 + 18n + 20}{4n^2 + 18n + 19},
\]
as desired.

5.3.2. \[
\lim_{j \to \infty} \left| \frac{a_{j+1}(z - z_0)^{j+1}}{a_j(z - z_0)^j} \right| = \lim_{j \to \infty} \left| \frac{a_{j+1}}{a_j} \right| \left| z = z_0 \right| = L |z - z_0|.
\]
By the ratio test (Theorem 2 on page 237), the series is convergent if \(L |z - z_0| < 1 \) (i.e. if \(|z - z_0| < 1/L \)) and diverges if \(L |z - z_0| > 1 \) (i.e. if \(|z - z_0| > 1/L \)). This shows that \(R = 1/L \) is the radius of convergence.

5.3.4. No. Indeed, suppose the series converges at \(2 + 3i \). Then the radius of convergence \(R \) is \(\geq |2 + 3i - 0| = \sqrt{13} \). On the other hand, the distance from the origin to \(3 - i \) is \(\sqrt{10} \), which is less than \(\sqrt{13} \). This means that \(3 - i \) is within the disk of convergence, so the series converges at \(3 - i \).

5.3.6. (a) \(f(0) = 1 \) agrees with the series at \(z = 0 \). For \(z \neq 0 \) divide the Maclaurin expansion
\[
\sin(z) = z - \frac{z^3}{3!} + \frac{z^5}{5!} - \ldots
\]
by \(z \) to obtain the desired Taylor expansion for \(f(z) \).

(b) The series for \(f(z) \) in part (a) converges for every complex number \(z \). This follows from the fact that the Maclaurin series for \(\sin(z) \) converges for every \(z \) (or, alternatively, from the ratio test). By Theorem 10, \(f(z) \) is analytic in the entire plane.

(c) \(f^{(3)}(0) = 3! a_3 \), where \(a_3 \) is the coefficient of \(z^3 \) in the power series for \(f(z) \) in part (a). Since this series has no \(z^3 \) term, \(a_3 = 0 \), and thus \(f^{(3)}(0) = 0 \) as well.
Similarly, \(f^{(4)}(0) = 4!a_4 = 4! \frac{1}{5!} = \frac{1}{5} \).

5.3.12. Substituting \(f(z) = \sum_{k=0}^{\infty} a_k z^k \) into the equation, we see that \(a_0 = f(0) = 1 \) and \(ka_k = a_{k-1} \) for all \(k \geq 1 \). Thus \(a_1 = 1, a_2 = 1/2, a_3 = 1/3a_2 = 1/3! \), etc. Continuing this way we see that \(a_k = 1/k! \) for every \(k \geq 0 \) and thus \(f(z) = \sum_{k=0}^{\infty} \frac{1}{k!} z^k = e^z \).