MATH 105 – 951
MATH 105 Midterm Practice Problems

Short Answer Questions
Evaluate the following integrals or state that they diverge.

1. \(\int_0^5 \frac{x}{x + 10} \, dx \)

2. \(\int_3^4 \frac{1}{y^2 - 4y - 12} \, dy \)

3. \(\int_0^a \frac{1}{\sqrt{a^2 - x^2}} \, dx \)

4. \(\int_2^\infty \frac{1}{x \ln(x)} \, dx \)

5. \(\int \tan^2(u) \cos^2(u) \, du \)

6. \(\int \csc^4(\theta) \cos(\theta) \, d\theta \)

7. \(\int \frac{x^2 + 2}{x + 2} \, dx \)

8. \(\int t \cos(t^2) \, dt \)

9. \(\int x^{3/2} \ln(x) \, dx \)

10. \(\int \ln(x) \, dx \) (Hint: Think of \(\ln(x) \) as \(1 \cdot \ln(x) \).)

11. \(\int_1^2 \frac{1}{\sqrt{x - 1}} \, dx \)
Long Answer Questions

1. Let \(F(x) = \int_{1}^{x} \frac{1}{t^2 + 6t + 5} dt \). Find the equation of the line tangent to \(F(x) \) at \(x = 2 \).

2. Recall that a differentiable function \(F(x) \) is said to be increasing at a point \(a \) if \(F'(a) \geq 0 \). Show that the function
\[
\int_{0}^{e^x} e^t dt
\]
is always increasing.

3. Find the derivative of the function \(F(x) = \int_{0}^{x} xe^t dt \). (Hint: \(x \) does not depend on \(t \).)

4. If \(f(x) \) is continuous on \([a, b]\), then the average value of \(f(x) \) on \([a, b]\) is defined to be
\[
f_{\text{ave}} = \frac{1}{b-a} \int_{a}^{b} f(x)dx.
\]
Find the average value of the function
\[
f(x) = \frac{x^3 + 4}{x^2 + 4x + 3}
\]on the interval \([0, 2]\).

5. Find the area of the overlapping portion of the circles \(x^2 + (y-1)^2 = 1 \) and \(x^2 + y^2 = 1 \) that is in the first quadrant. (Note: The equation \(x^2 + (y-1)^2 = 1 \) is the equation of the circle of radius 1 centred at the point \((0, 1)\), and the equation \(x^2 + y^2 = 1 \) is the equation of the circle of radius 1 centred at the origin.)

6. Find the area between the curves \(y = e + \sin^2(\pi x) \) and \(y = xe^x \) in the first quadrant.
7. (a) Use sigma notation to write down a Midpoint Riemann Sum approximation of the area under the curve \(y = e^{1/t} \) between \(t = 1 \) and \(t = 2 \) with \(n = 10 \). Do not evaluate the Riemann sum.

(b) Use the error formula

\[
|\text{error}| \leq \frac{N(b-a)^3}{24n^2}
\]

to find a bound for the error in the approximation in (a).

8. The lifetime \(T \) (in hours) of a lightbulb has probability density function

\[
f(t) = \begin{cases}
\frac{1}{100}e^{-t/100} & \text{if } t \geq 0 \\
0 & \text{if } t < 0
\end{cases}
\]

(a) Find the probability that the lightbulb will not burn out within the first 100 hours.

(b) Find the expected lifetime of the lightbulb.

9. The distance \(X \) (in cm) between a dart’s location on a dartboard and the bullseye (centre of the dartboard) has probability density function

\[
f(x) = \begin{cases}
\frac{3}{4000}(20x - x^2) & \text{if } 0 \leq x \leq 20 \\
0 & \text{otherwise}
\end{cases}
\]

Calculate the standard deviation in \(X \), \(\sigma(X) \).