1. Let S be a countable set and E be any infinite subset of S. Show that E is countable.

 Ans: Since S is countable, there exists a bijection $f: \mathbb{N} \rightarrow S$, where \mathbb{N} is the set of natural numbers $\{1, 2, 3, \ldots\}$. Let E be any infinite subset of S and let n_1 be the smallest integer such that $f(n_1) \in E$. Such an n_1 exists by the Well Ordering property. Let n_2 be the smallest positive integer such that $n_2 > n_1$ and $f(n_2) \in E$. Inductively define n_k to be the smallest integer (positive) greater than n_{k-1} such that $f(n_k) \in E$. This process continues indefinitely since E is infinite. Consider the function $g: \mathbb{N} \rightarrow E$, by $g(1) = f(n_1), g(2) = f(n_2), \ldots$. Clearly the map g is injective as f is injective. To show that g is surjective, let $e \in E$. Since $E \subseteq S$, and f is surjective, we see that $E = \{f(n_1), f(n_2), f(n_3), \ldots\}$. Hence $g(n) = f(n)$ = e and g is a bijection. Hence E is countable.

2. Show that the product of any three consecutive integers is divisible by 3.

 Ans: Let $a, a+1, a+2$ be any three consecutive integers. We may clearly assume $a \neq 0$. Then one of the three integers has to be divisible by 3, and therefore the same holds for the product.

3. For a prime number $p > 3$, show that the triplet $p, p+2, p+4$ are not all primes.
Ans: Since \(p > 3 \) is a prime, \(p \times 3 \). Thus if we divide \(p \) by 3, then \(p = 3q + r \), with \(0 \leq r < 3 \).

9) If \(r = 0 \), then \(p \) is divisible by 3 \(\Rightarrow \) \(p \) is prime.

9) If \(r = 1 \), then \(p = 3k + 1 \) \(\Rightarrow \) \(p + 2 \) is divisible by 3.

So \((p + 2) \) is not a prime.

9) If \(r = 2 \), then \(p = 3k + 2 \) \(\Rightarrow \) \(p + 4 = 3k + 6 \) and \(3 \mid (p + 4) \), so \((p + 4) \) is not a prime.

3) Show that there are infinitely many primes of the form \(30n + 7 \), \(n \in \mathbb{N} \).

Ans: The gcd \((7, 30) = 1\). The set \(\{30n + 7\} \) is in arithmetic progression and we can apply Dirichlet's Theorem. Hence there are infinitely many primes of this form.

4) Show that the 5,987,091st prime is likely to have 7 digits; given that \(x/\ln x \approx 72,382.4 \) for \(x = 10^6 \) and \(x/\ln x \approx 620,420.7 \) for \(x = 10^7 \).

Ans: The prime number theorem tells us that \(x/\ln x \) is a good approximation for \(\pi(x) \) as \(x \to \infty \). Take \(x = 10^6 \), and \(x = 10^7 \), then \(\pi(x) \) counts the number of primes \(\leq 10^6 \). Since the \(k \)th prime \(p \) for \(k = 5,987,091 \), has to lie between \(\pi(10^6) \) and \(\pi(10^7) \), given the values for \(x/\ln x \) when \(x = 10^6 \) and \(10^7 \), we see that it has 7 digits.