The due date for the assignment is 27 January.

1. (5 points) Which of the following sets are well-ordered? Justify your answer in each case.
 (a) The set of natural numbers, \(\mathbb{N} = \{1, 2, 3, \cdots\} \).
 (b) The open interval \((-1, 1)\).
 (c) The set of positive rational numbers.
 (d) The set of integers, \(\mathbb{Z} \).
 (e) A proper subset of a well-ordered set.

2. (4 points) Let \(r = -\frac{30}{4} \). Write down the answer to each of the following:
 (a) The floor function of \(r \), \(\lfloor r \rfloor \).
 (b) The ceiling function of \(r \), \(\lceil r \rceil \).
 (c) The integer part of \(r \), \(\lfloor r \rfloor \).
 (d) The fractional part of \(r \), \(\{ r \} \).

3. (3 points) Which of the following sequences can be defined by a recursive relation? If yes, write down a recursive relation defining that sequence.
 (a) The sequence of Fibonacci numbers, \((0, 1, 1, 2, 3, 5, 8, \cdots)\).
 (b) The sequence \((0, \frac{1}{2}, 1, \frac{3}{2}, 4, \cdots)\) defined by \(\{a_n\}_{n \geq 0} \) where \(a_n = \left(\frac{n}{2}\right)^2 \) if \(n \) is even and \(a_n = \frac{n}{2} \) if \(n \) is odd.
 (c) The sequence of squares \((0, 1, 4, 9, \cdots)\) defined by \(\{a_n\}_{n \geq 0} \), \(a_n = n^2 \).

4. (4 points) Let \(r = \sqrt{5} \). Find integers \(a \) and \(b \) such that \(|ar - b| < \frac{1}{3} \).

5. (4 points) Show that 3 divides \(n^3 - n \) for any integer \(n \). Does 4 divide \(n^4 - n \) for any integer \(n \)? Prove this or provide a counterexample.

6. (5 points) Use induction to prove that \(n^2 \leq 2^n \) for all natural numbers \(n \geq 4 \).