Theory: \(C \equiv P^e \mod p \)

1) Here \(P \) denotes the number blocks of the plain text, for example 2200, 0819, etc. in the above example. Then we obtain \(C \) by the above formula, where \(C \) denotes the corresponding blocks of ciphertext numbers.

For \(P = 2200 \), we have \(C = 602 \), etc.

2) To decrypt the ciphertext, we need to recover \(P \) from \(C \). The following steps are used. The decryption key is an integer \(d \) such that \(de \equiv 1 \mod (p-1) \). Since \((e, p-1) = 1 \), we have integers \(d, k \) such that

\[
de + k(p-1) = 1,\text{ hence } de \equiv 1 \mod (p-1).
\]

3) Take a ciphertext block \(C \). Then we get,

\[
C \equiv P^e \mod p
\]

\[
\Rightarrow C^d \equiv P^{de} \mod p \equiv P \mod p, \text{ as } de + k(p-1) = 1,
\]

\[
\Rightarrow C^d \equiv P \equiv (p^{k(p-1)}) \mod p; \text{ suppose } p \nmid p
\]

\[
\Rightarrow C^d \equiv P \mod p, \text{ as by } \exists \overline{1} \text{ with } P \equiv 1 \mod p.
\]

If \(p \nmid P \), then \(P = 0 \), as \(0 \leq P < p \), we have \(C = 0 \), since \(C \equiv P^e \mod p \), so \(C \equiv 0 \mod p \).
As $0 < c < p$, we conclude that
\[C^d \equiv 0 \mod p \implies C^d \equiv 1 \mod p \] in this case as well.

Summary: For given prime p and number e relatively prime to $p-1$, choose d such that $ed \equiv 1 \mod (p-1)$. This is possible as $(e, p-1) = 1$.

Coding: $C = P \mod p$,

Decoding: $P \equiv C^d \mod p$.

In all cases P and C are chosen between 0 and $(p-1)$ inclusive, namely the possible remainders when dividing by p.

If $e = 3$, encrypt the message GOOD MORNING.

Note $25 < p < 2525$, for $p=101$.

Hence $m = 1$, $2m = 2$.

The numerical equivalents for GOOD MORNING, in blocks of 2 = $2m$ digits are:

06 14 14 03 12 1417 13 08 12 06.
Raise each of these 2 digit numbers to the 3rd power, since \(e = 3 \) and reducing modulo 101 gives 14 17 17 27 11 17 65 76 07 76 14.

Eq: What is the plain text message that corresponds to the ciphertext 01 09 00 12 12 09 24 10 that is produced using modular exponentiation with modulus \(p = 29 \) and encryption exponent \(e = 5 \)?

By: \(p = 29, \ e = 5 \).

Inverse of \(e = 5 \) modulo \(p - 1 = 28 \) is 17, since
\[5 \times 17 = 105 \quad \text{and} \quad 105 \equiv 1 \pmod{28}, \]
\[28 \times 4 = 104 = 105 - 1.\]

Raise each block to 17th power and reduce modulo 29. We then get 01 04 00 12 12 04 20 15

Plain text: BEAM ME UP.