Prime numbers and their distribution

Theorem: Suppose \(n \) is composite. Then \(n \) has a prime factor which is less than or equal to \(\sqrt{n} \).

Proof: Since \(n \) is composite, there are integers \(a, b > 1 \) such that

\[n = a \cdot b \]

So one of \(a, b \) should be \(\leq \sqrt{n} \).

(Because if \(a > \sqrt{n} \Rightarrow a \cdot b > \sqrt{n} \cdot \sqrt{n} = n \) a contradiction)

Assume \(a \leq \sqrt{n} \)

Take any prime \(p \) dividing \(a \). This prime divides \(n \) and \(p \leq a \). This \(p \) does the job.
How to use this theorem to find the number of primes less than a given number x?

- Write down all the numbers from 1 to x.
- Look at primes less than \sqrt{x}.

 $2, 3, 5, 7, \ldots, \text{largest prime less than } \sqrt{x} = p_n$

- Cross out all numbers divisible by 2.

 \ldots divisible by 3.

 divisible by p_n
Sieve of Eratosthenes

\[x = 25 \]

\[\sqrt{x} = 5 \]

2, 3, 5 are the primes \(\leq 5 \).
(1896) Hadamard, de la Vallee Poussin

(Prime Number Theorem)

\[\pi(x) \sim \frac{x}{\log x} \]

What this precisely means is:

\[\lim_{x \to \infty} \frac{\pi(x)}{\left(\frac{x}{\log x} \right)} = 1 \]

(Dirichlet's) Theorem on primes in arithmetic progressions.

Theorem: Let \(a, b \) be positive integers which are co-prime \((\gcd(a,b) = 1) \). Then the arithmetic progression \(\{ an + b \mid n = 0, 1, 2, 3, \ldots \} \) contains an infinite number of primes.
What do we want to study about the primes?

The prime counting function \(\Pi(x) \) is defined by the following:

\[
\Pi(x) = \# \text{ of primes } \leq x
\]

\(\Pi(5) = 3 \)

\(\Pi(10) = 4 \)

'Roughly','

How does \(\Pi(x) \) look like?

(Gauss) He conjectured that

\[
\Pi(x) \sim \int_{2}^{x} \frac{1}{\log t} \, dt
\]

as \(x \to \infty \)
The Greatest Common Divisor of two integers.

Bezout's Theorem. Let a and b be integers.

Then there exist integers m and n such that

$$\gcd(a, b) = ma + nb$$

Examples

$a = 2, b = 3$

$\gcd(a, b) = 1$

$m = -1, n = 1$ works.

$m = 2, n = -1$ works too.
$a = 2, b = 1$

$3, 5, 7, 9, 11, \ldots$

$5, 9, 13, 17, 21, \ldots$

$3, 7, 11, 15, 19, \ldots$
Lemma: Let a, b be non-zero integers. Then $\gcd(a, b)$ is the least positive integer which can be written as a linear combination $ma + nb$ for some integers m, n.

Proof: Let

$$S = \{ \text{All linear combinations } ma + nb \text{ such that } ma + nb > 0 \}.$$

S is non-empty.

(S has $a = 1 - a + 0 - b > 0$)

By the well-ordering principle, S has a least element d.

To show that $\gcd(a, b) = d$.

Strategy: $\gcd(a, b) \mid d$

and $d \mid \gcd(a, b)$
(i) \(\gcd(a, b) \mid d \).

Remember \(d \in \mathbb{S} \), so \(d = ma + nb \) for some \(m, n \in \mathbb{Z} \).

Suppose \(e = \gcd(a, b) \)

\[
e \mid a \quad \Rightarrow \quad e \mid ma + nb = d
\]

\[
e \mid d.
\]

(ii) \(d \mid \gcd(a, b) = e \). To prove this assertion, it is enough to prove that \(d \mid a \) and \(d \mid b \).

Enough to show that \(d \mid a \). \(\checkmark \) (by symmetry)

Division algorithm: \(a = qd + r \) for quotient \(q \) and the remainder \(0 \leq r < d \).

To show that the remainders \(r = 0 \).
\[r = a - qd \]

Remember again that \(d \in S \), so \(d = ma + nb \) for some \(m,n \in \mathbb{Z} \)

\[r = a - q(ma + nb) \]

\[= (1 - mq)a + (-qn)b \]

This is in \(S \), so \(r \in S \).

but \(0 \leq r < d \)

\(d \) is the least element of \(S \), so \(r \) cannot be positive.

\[q_2 = 0. \]